О существовании функции Ляпунова в виде квадратичной формы для систем линейных дифференциальных уравнений с импульсным воздействием

Розглянуто систему лінійних диференціальних рівнянь з імпульсною дією у фіксовані моменти часу. Отримано достатні умови існування додатно означеної квадратичної форми такої, що її похідна чшшосі і диференціальних рівнянь та її зміни в точках імульсного впливу є негативно означеними квадратичними фор...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Український математичний журнал
Datum:2010
1. Verfasser: Игнатьев, А.О.
Format: Artikel
Sprache:Russian
Veröffentlicht: Інститут математики НАН України 2010
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/166258
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:О существовании функции Ляпунова в виде квадратичной формы для систем линейных дифференциальных уравнений с импульсным воздействием / А.О. Игнатьев // Український математичний журнал. — 2010. — Т. 62, № 11. — С. 1451–1458. — Бібліогр.: 22 назв. — рос.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-166258
record_format dspace
spelling Игнатьев, А.О.
2020-02-18T16:09:18Z
2020-02-18T16:09:18Z
2010
О существовании функции Ляпунова в виде квадратичной формы для систем линейных дифференциальных уравнений с импульсным воздействием / А.О. Игнатьев // Український математичний журнал. — 2010. — Т. 62, № 11. — С. 1451–1458. — Бібліогр.: 22 назв. — рос.
1027-3190
https://nasplib.isofts.kiev.ua/handle/123456789/166258
517.925
Розглянуто систему лінійних диференціальних рівнянь з імпульсною дією у фіксовані моменти часу. Отримано достатні умови існування додатно означеної квадратичної форми такої, що її похідна чшшосі і диференціальних рівнянь та її зміни в точках імульсного впливу є негативно означеними квадратичними формами незалежно від моментів імпульсної дії.
A system of linear differential equations with pulse action at fixed times is considered. We obtain sufficient conditions for the existence of a positive-definite quadratic form whose derivative along the solutions of differential equations and whose variation at the points of pulse action are negative-definite quadratic forms regardless of the times of pulse action.
ru
Інститут математики НАН України
Український математичний журнал
Статті
О существовании функции Ляпунова в виде квадратичной формы для систем линейных дифференциальных уравнений с импульсным воздействием
On the existence of a lyapunov function as a quadratic form for impulsive systems of linear differential equations
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title О существовании функции Ляпунова в виде квадратичной формы для систем линейных дифференциальных уравнений с импульсным воздействием
spellingShingle О существовании функции Ляпунова в виде квадратичной формы для систем линейных дифференциальных уравнений с импульсным воздействием
Игнатьев, А.О.
Статті
title_short О существовании функции Ляпунова в виде квадратичной формы для систем линейных дифференциальных уравнений с импульсным воздействием
title_full О существовании функции Ляпунова в виде квадратичной формы для систем линейных дифференциальных уравнений с импульсным воздействием
title_fullStr О существовании функции Ляпунова в виде квадратичной формы для систем линейных дифференциальных уравнений с импульсным воздействием
title_full_unstemmed О существовании функции Ляпунова в виде квадратичной формы для систем линейных дифференциальных уравнений с импульсным воздействием
title_sort о существовании функции ляпунова в виде квадратичной формы для систем линейных дифференциальных уравнений с импульсным воздействием
author Игнатьев, А.О.
author_facet Игнатьев, А.О.
topic Статті
topic_facet Статті
publishDate 2010
language Russian
container_title Український математичний журнал
publisher Інститут математики НАН України
format Article
title_alt On the existence of a lyapunov function as a quadratic form for impulsive systems of linear differential equations
description Розглянуто систему лінійних диференціальних рівнянь з імпульсною дією у фіксовані моменти часу. Отримано достатні умови існування додатно означеної квадратичної форми такої, що її похідна чшшосі і диференціальних рівнянь та її зміни в точках імульсного впливу є негативно означеними квадратичними формами незалежно від моментів імпульсної дії. A system of linear differential equations with pulse action at fixed times is considered. We obtain sufficient conditions for the existence of a positive-definite quadratic form whose derivative along the solutions of differential equations and whose variation at the points of pulse action are negative-definite quadratic forms regardless of the times of pulse action.
issn 1027-3190
url https://nasplib.isofts.kiev.ua/handle/123456789/166258
citation_txt О существовании функции Ляпунова в виде квадратичной формы для систем линейных дифференциальных уравнений с импульсным воздействием / А.О. Игнатьев // Український математичний журнал. — 2010. — Т. 62, № 11. — С. 1451–1458. — Бібліогр.: 22 назв. — рос.
work_keys_str_mv AT ignatʹevao osuŝestvovaniifunkciilâpunovavvidekvadratičnoiformydlâsistemlineinyhdifferencialʹnyhuravneniisimpulʹsnymvozdeistviem
AT ignatʹevao ontheexistenceofalyapunovfunctionasaquadraticformforimpulsivesystemsoflineardifferentialequations
first_indexed 2025-11-25T23:48:01Z
last_indexed 2025-11-25T23:48:01Z
_version_ 1850584301728432128
fulltext UDK 517.925 A. O. Yhnat\ev (Yn-t prykl. matematyky y mexanyky NAN Ukrayn¥, Doneck) O SUWESTVOVANYY FUNKCYY LQPUNOVA V VYDE KVADRATYÇNOJ FORMÁ DLQ SYSTEM LYNEJNÁX DYFFERENCYAL|NÁX URAVNENYJ S YMPUL|SNÁM VOZDEJSTVYEM A system of linear differential equations with impulse effect at fixed times is considered. Sufficient conditions for the existence of a positive definite quadratic form are obtained. This form is such that its derivative along the solutions of differential equations and its variations at points of impulse effect are negative definite quadratic forms regardless of the moments of impulse effects. Rozhlqnuto systemu linijnyx dyferencial\nyx rivnqn\ z impul\snog di[g u fiksovani momenty çasu. Otrymano dostatni umovy isnuvannq dodatno oznaçeno] kvadratyçno] formy tako], wo ]] poxidna çynnosti dyferencial\nyx rivnqn\ ta ]] zminy v toçkax imul\snoho vplyvu [ nehatyvno oznaçenymy kvadratyçnymy formamy nezaleΩno vid momentiv impul\sno] di]. 1. Vvedenye. Pry matematyçeskom opysanyy πvolgcyy real\n¥x processov s kratkovremenn¥my vozmuwenyqmy vo mnohyx sluçaqx dlytel\nost\g vozmuwe- nyj udobno prenebreç\ y sçytat\, çto πty vozmuwenyq ymegt „mhnovenn¥j” xa- rakter. Takaq ydealyzacyq pryvodyt k neobxodymosty yssledovat\ dynamyçe- skye system¥ s razr¥vn¥my traektoryqmy yly, ynaçe, dyfferencyal\n¥e urav- nenyq s ympul\sn¥m vozdejstvyem. Sejças teoryq dyfferencyal\n¥x uravne- nyj s ympul\sn¥m vozdejstvyem predstavlqet soboj yntensyvno razvyvagweesq napravlenye matematyky, razlyçn¥e aspekt¥ kotoroho yzloΩen¥ v monohrafy- qx [1, 2]. V poslednye hod¥ opublykovan¥ sotny prykladn¥x rabot, v kaçestve matematyçeskyx modelej kotor¥x yspol\zovan¥ dyfferencyal\n¥e uravnenyq s ympul\sn¥m vozdejstvyem. Vsledstvye πtoho zametno uvelyçylos\ çyslo ma- tematyçeskyx rabot po yssledovanyg razlyçn¥x aspektov teoryy ympul\sn¥x system [3 – 14]. Nastoqwaq stat\q posvqwena yzuçenyg ustojçyvosty reßenyj system s ympul\sn¥m vozdejstvyem. 2. Osnovn¥e opredelenyq y postanovka zadaçy. Rassmotrym systemu ob¥knovenn¥x dyfferencyal\n¥x uravnenyj s ympul\sn¥m vozdejstvyem dx dt f t x= ( , ) , t i≠ τ , i = 1, 2, … , (1) ∆ x J xt i i= =τ ( ) , i = 1, 2, … , (2) hde t ∈ +R : = 0, ∞[ ) — vremq, i ∈N (N — mnoΩestvo natural\n¥x çysel), τi =— konstant¥, x n∈R , f : Rn+1 → Rn , Ji : Rn → Rn . Uravnenyq (1), (2) opys¥vagt dynamyku system¥, sostoqwej yz dvux çastej: neprer¥vnoj (pry t i≠ τ ), opys¥vaemoj ob¥knovenn¥my dyfferencyal\n¥my uravnenyqmy, y dyskretnoj (v moment¥ τi ), kohda reßenyq system¥ poluçagt skaçkoobrazn¥e yzmenenyq. Oboznaçym BH : = x x x x Hn n∈ = + … + ≤{ }R : 1 2 2 , Gi : = ( , ) : ,t x t x Bn i i H∈ < < ∈{ }+ −R 1 1τ τ , G Gi i : = = ∞ 1 ∪ . Sformulyruem hypotez¥, kotor¥m moΩet udovletvorqt\ systema (1), (2): H1 . Funkcyq f = ( , , )f fn1 … : G → Rn ravnomerno neprer¥vna v R+ × BH ; © A. O. YHNAT|EV, 2010 ISSN 1027-3190. Ukr. mat. Ωurn., 2010, t. 62, # 11 1451 1452 A. O. YHNAT|EV f t( , )0 ≡ 0, y suwestvuet konstanta L > 0 takaq, çto f t x( , ) – f t y( , ) ≤ ≤ L x y− pry ( , )t x ∈ G, ( , )t y ∈ G, x BH∈ , y BH∈ . H2 . Funkcyy Ji : BH → Rn , i ∈N , neprer¥vn¥ y udovletvorqgt uslovyg Lypßyca s konstantoj L v BH y Ji ( )0 = 0 pry i ∈N . H3 . Suwestvuet konstanta h H∈( , )0 takaq, çto esly x Bh∈ , to x + + J xi ( ) ∈ BH pry i ∈N . H4 . Konstant¥ τi udovletvorqgt uslovyqm 0 = τ0 < τ1 < τ2 < … , lim i i→∞ = ∞τ . Budem oboznaçat\ çerez x t t x( , , )0 0 pry t t> 0 reßenye system¥ (1), (2), udovletvorqgwee uslovyg x t t x( , , )0 0 0 = x0 v sluçae, kohda t i0 ≠ τ , i ∈N . Esly Ωe t i0 = τ pry kakom-lybo natural\nom i, to pod v¥raΩenyem x t t x( , , )0 0 budem ponymat\ x t t, 0( + 0, x0 + J xi ( )0 ) (pry t t> 0 ). Znaçenye πtoho reßenyq v moment t takΩe budem oboznaçat\ x t t x( , , )0 0 . ∏to reßenye budem predpolahat\ neprer¥vno dyfferencyruem¥m po t na lgbom yz mno- Ωestv Gi y neprer¥vn¥m sleva v toçkax razr¥va: x t xi( , , )τ 0 0 = x i(τ − 0 , t0 , x0 ) . Pry v¥polnenyy hypotez H1 – H3 systema (1), (2) dopuskaet tryvyal\noe reßenye x ≡ 0. (3) Sformulyruem ponqtyq ustojçyvosty y prytqΩenyq tryvyal\noho (nule- voho) reßenyq system¥ (1), (2). Opredelenye 1. Tryvyal\noe reßenye system¥ (1), (2) naz¥vaetsq ustoj- çyv¥m, esly dlq lgb¥x ε > 0, t0 ∈ +R moΩno ukazat\ δ = δ ε( , )t0 > 0 takoe, çto esly x0 ≤ δ, to x t t x( , , )0 0 ≤ ε pry t > t0 . Esly pry πtom δ moΩno v¥brat\ ne zavysqwym ot t0 , to reßenye (3) naz¥vaetsq ravnomerno ustojçyv¥m. Opredelenye 2. Reßenye (3) system¥ (1), (2) naz¥vaetsq: prytqhyvagwym, esly dlq lgboho t0 ∈ +R suwestvuet λ = λ( )t0 > 0 y dlq lgb¥x ε > 0 y x B0 ∈ λ suwestvuet σ = σ ε( , , )t x0 0 > 0 takoe , çto x t t x( , , )0 0 ≤ ε dlq vsex t ≥ t0 + σ; ravnomerno prytqhyvagwym, esly ymeetsq takoe λ > 0, çto dlq lgboho ε > 0 najdetsq σ = σ ε( ) > 0 takoe, çto dlq lgb¥x t0 ∈ +R , x B0 ∈ λ , t ≥ ≥ t0 + σ spravedlyvo x t t x( , , )0 0 ∈ Bε . Yn¥my slovamy, reßenye (3) system¥ (1), (2) naz¥vaetsq: prytqhyvagwym, esly dlq lgb¥x t0 ∈ +R , x B0 ∈ λ spravedlyvo predel\- noe sootnoßenye lim ( , , ) t x t t x →∞ 0 0 = 0; (4) ravnomerno prytqhyvagwym, esly predel\noe sootnoßenye (4) v¥polnqetsq ravnomerno po x B0 ∈ λ , t0 ∈ +R . Opredelenye 3. Tryvyal\noe reßenye system¥ (1), (2) naz¥vaetsq: asymptotyçesky ustojçyv¥m, esly ono ustojçyvo y prytqhyvagwee; ravnomerno asymptotyçesky ustojçyv¥m, esly ono ravnomerno ustojçyvo y ravnomerno prytqhyvagwee. ISSN 1027-3190. Ukr. mat. Ωurn., 2010, t. 62, # 11 O SUWESTVOVANYY FUNKCYY LQPUNOVA V VYDE KVADRATYÇNOJ FORMÁ… 1453 Opredelenye 4. Tryvyal\noe reßenye system¥ (1), (2) naz¥vaetsq πkspo- nencyal\no ustojçyv¥m, esly suwestvugt poloΩytel\n¥e konstant¥ γ y α takye, çto reßenyq system¥ (1), (2) obladagt svojstvom x t t x( , , )0 0 ≤ ≤ γ αx e t 0 − . Oçevydno, çto esly reßenye (3) system¥ (1), (2) πksponencyal\no ustojçyvo, to ono takΩe ravnomerno asymptotyçesky ustojçyvo. Dlq yssledovanyq ustojçyvosty reßenyq (3) S.=Y.=Hurhuloj y N.=A.=Peres- tgkom [15] predloΩeno yspol\zovat\ metod funkcyj Lqpunova, kotor¥j pred- polahaet suwestvovanye poloΩytel\no opredelennoj funkcyy V t x( , ) , proyz- vodnaq kotoroj vdol\ neprer¥vnoj system¥ (1) y varyacyq kotoroj v sylu dyskretnoj system¥ (2) nepoloΩytel\n¥. V rabotax [3, 5, 10] pry predpoloΩe- nyy v¥polnenyq hypotez H1 – H4 ukazan¥ uslovyq, pry kotor¥x teorema Hur- hul¥ – Perestgka ob asymptotyçeskoj ustojçyvosty obratyma. Pry yssledovanyy nekotor¥x processov, proysxodqwyx v real\nom myre y opys¥vaem¥x dyfferencyal\n¥my uravnenyqmy s ympul\sn¥m vozdejstvyem (1), (2), vaΩn¥m qvlqetsq postroenye (yly xotq b¥ dokazatel\stvo suwestvova- nyq) poloΩytel\no opredelennoj funkcyy Lqpunova takoj, çto dV dt = ∂ ∂= ∑ V x f ii n i 1 + ∂ ∂ V t , t i≠ τ , x BH∈ , y ∆ V t i=τ = V xi iτ τ+ +( )0 0, ( ) – V xi( , )τ , i = 1, 2, … , odnovremenno qvlqgtsq otrycatel\no opredelenn¥my funkcyqmy [16 – 19]. V nastoqwej stat\e rassmatryvaetsq lynejnaq systema s postoqnn¥my koπffy- cyentamy dx dt Ax= , t i≠ τ , i = 1, 2, … , (5) ∆ x Bxt i= =τ , i = 1, 2, … , (6) hde A y B — kvadratn¥e nev¥roΩdenn¥e matryc¥, πlementamy kotor¥x qv- lqgtsq dejstvytel\n¥e çysla. Stavytsq zadaça: najty uslovyq, pry kotor¥x suwestvuet poloΩytel\no op- redelennaq kvadratyçnaq forma V x( ) = x PxT takaq, çto ee proyzvodnaq vdol\ reßenyj system¥ (5) y ee varyacyq na skaçkax system¥, v¥çyslennaq v sylu (6), qvlqgtsq otrycatel\no opredelenn¥my otnosytel\no x . Zdes\ y v dal\nejßem dlq matryc¥ K lgboj razmernosty K T oboznaçaet transponyro- vannug matrycu. Dyskretnug systemu (6) zapyßem v vyde x i( )τ + 0 = ( ) ( )E B x i+ τ , i = 1, 2, … , hde E — edynyçnaq (n × n)-matryca. Yntuytyvno ponqtno, çto esly τi udovletvorqgt uslovyg τi+1 – τi < θ1 , hde θ1 > 0 dostatoçno malo, to suwestvenn¥j vklad v dynamyku system¥ (5), (6) vnosqt dyskretn¥e uravnenyq (6) y, sledovatel\no, nuΩno potrebovat\, çto- b¥ sobstvenn¥e çysla matryc¥ E + B leΩaly vnutry edynyçnoho kruha komp- leksnoj ploskosty. Esly Ωe τi udovletvorqgt uslovyg τi+1 – τi > θ2 , hde θ2 > 0 — dostatoçno bol\ßoe çyslo, to dlq asymptotyçeskoj ustojçyvosty nu- ISSN 1027-3190. Ukr. mat. Ωurn., 2010, t. 62, # 11 1454 A. O. YHNAT|EV levoho reßenyq system¥ (5), (6) neobxodymo, çtob¥ matryca A b¥la hurvyce- voj. Poπtomu predstavlqetsq estestvenn¥m sledugwee predpoloΩenye. PredpoloΩenye 1. Sobstvenn¥e çysla matryc¥ A raspoloΩen¥ v levoj otkr¥toj poluploskosty kompleksnoj ploskosty, a sobstvenn¥e çysla mat- ryc¥ B — vnutry kruha edynyçnoho radyusa s koordynatamy ( , )−1 0 na komp- leksnoj ploskosty. Rassmotrym teper\ te sluçay, hde postavlennaq zadaça moΩet b¥t\ reßena. 3. Osnovn¥e rezul\tat¥. 3.1. Matryc¥ A y B kommutyrugt. Mat- rycu P budem naz¥vat\ poloΩytel\no opredelennoj y oboznaçat\ P > 0, esly kvadratyçnaq forma x PxT poloΩytel\no opredelena. V rassmatryvaemom sluçae nuΩno pokazat\, çto suwestvuet symmetryçnaq poloΩytel\no opredelennaq matryca P takaq, çto x A P PA xT T( )+ < 0, (7) x E B P E B P xT T( ) ( )+ + −  < 0. (8) Teorema 1. Esly matryc¥ A y B kommutyrugt (AB = BA) y v¥polnen¥ uslovyq predpoloΩenyq=1, to pry lgb¥x τi , udovletvorqgwyx hypoteze H4 , y pry lgboj poloΩytel\no opredelennoj matryce R funkcyq V x x PxT( ) = , (9) qvlqgwaqsq reßenyem matryçn¥x uravnenyj Lqpunova A Q QA RT + = − , (10) ( ) ( )E B P E B P QT+ + − = − , (11) est\ funkcyq Lqpunova, udovletvorqgwaq uslovyqm (7) y (8). Dokazatel\stvo. Vnaçale pokaΩem, çto yzmenenye ∆ V funkcyy V pry t i= τ qvlqetsq otrycatel\no opredelennoj kvadratyçnoj formoj otnosytel\- no x i( )τ . Dejstvytel\no, ∆ V x x x i ( ) ( )= τ = V x i( )τ +( )0 – V x i( )τ( ) = x PxT i i( ) ( )τ τ+ +0 0 – – x PxT i i( ) ( )τ τ = x E B P E B xT i T i( ) ( ) ( ) ( )τ τ+ + – x PxT i i( ) ( )τ τ = = x E B P E B P xT i T i( ) ( ) ( ) ( )τ τ+ + −  = −x QxT i i( ) ( )τ τ . Poskol\ku sobstvenn¥e çysla matryc¥ A ymegt otrycatel\n¥e vewestvenn¥e çasty, a matryca R poloΩytel\no opredelena, matryca Q, qvlqgwaqsq reße- nyem matryçnoho uravnenyq Lqpunova (10), takΩe poloΩytel\no opredelena, sledovatel\no, ∆ V x x x i ( ) ( )= τ = −x QxT i i( ) ( )τ τ < 0. Teper\ pokaΩem, çto �V = x A P PA xT T( )+ predstavlqet soboj otrycatel\- no opredelennug kvadratyçnug formu yly, druhymy slovamy, A PT + PA < 0. Dlq πtoho najdem Q yz (11) y podstavym v (10). V rezul\tate poluçym A P E B P E BT T− + + ( ) ( ) + P E B P E B AT− + + ( ) ( ) = – R. (12) Tak kak matryc¥ A y B kommutyrugt, to ISSN 1027-3190. Ukr. mat. Ωurn., 2010, t. 62, # 11 O SUWESTVOVANYY FUNKCYY LQPUNOVA V VYDE KVADRATYÇNOJ FORMÁ… 1455 ( )E B A+ = A E B( )+ , A E BT T( )+ = ( )E B AT T+ . (13) Perepyßem ravenstvo (12), yspol\zovav (13): ( )A P PAT + – ( ) ( ) ( )E B A P PA E BT T+ + + = – R . Poskol\ku po predpoloΩenyg sobstvenn¥e çysla matryc¥ E + B raspoloΩen¥ vnutry edynyçnoho kruha kompleksnoj ploskosty, a R poloΩytel\no oprede- lena, matryca A PT + PA qvlqetsq otrycatel\no opredelennoj [20, s. 215]. Sledstvye 1. Pry v¥polnenyy uslovyj teorem¥=1 nulevoe reßenye syste- m¥ (5), (6) πksponencyal\no ustojçyvo. 3.2. Matryc¥ A y B symmetryçn¥. Rassmotrym sluçaj, kohda mat- ryc¥ A y B symmetryçn¥, t.=e. A = AT , B = BT . Teorema 2. Esly matryc¥ A y B symmetryçn¥ y v¥polnen¥ uslovyq predpoloΩenyq=1, to pry lgb¥x τi , udovletvorqgwyx hypoteze H4 , nulevoe reßenye system¥ (5), (6) πksponencyal\no ustojçyvo y suwestvuet poloΩy- tel\no opredelennaq kvadratyçnaq forma (9) takaq, çto v¥polnqgtsq uslo- vyq (7) y (8). Dokazatel\stvo. V sylu predpoloΩenyq=1 y symmetryçnosty matryc A y B suwestvugt dejstvytel\n¥e çysla λ1 y λ2 takye, çto λ1 > 0, λ2 < 1, ( )A E+ λ1 < 0, ( )B E E+ −2 2 2λ < 0. (14) Rassmotrym kvadratyçnug formu V x( ) = x xT = x1 2 + … + xn 2 . (15) Ocenym �V . Na lgbom yntervale neprer¥vnosty ( , )τ τi i+1 �V = 2 x AxT ≤ −2 1λ x xT = −2 1λ V . (16) V toçkax razr¥va, uçyt¥vaq symmetryçnost\ matryc¥ B, ymeem ∆ V x t i ( ) =τ = V x V xi i( ) ( )τ τ+( ) − ( )0 = x E B E xT i i( ) ( ) ( )τ τ+ −  2 , otkuda s uçetom uslovyq (14) poluçaem ∆ V x t i ( ) =τ ≤ − −( ) ( )1 2 2λ τV x i( ) . (17) Ne narußaq obwnosty predpoloΩym, çto naçal\n¥j moment vremeny t0 pry- nadleΩyt yntervalu ( , )0 1τ . Yz ocenok (16) y (17) pry t ∈ τ τk k, +( ]1 naxodym V x t t x( , , )0 0( ) ≤ e V xt t k− −2 2 2 0 1 0λ λ( ) ( ) . Uçyt¥vaq, çto λ2 < 1, zaklgçaem, çto nulevoe reßenye system¥ (5), (6) πks- ponencyal\no ustojçyvo, y v kaçestve funkcyy Lqpunova moΩno v¥brat\ kvad- ratyçnug formu (15), çto y trebovalos\ dokazat\. 3.3. Dvumern¥j sluçaj. Oboznaçym C = E + B. (18) Dlq proyzvol\noho (n-mernoho) sluçaq postavlennaq zadaça svodytsq k sle- dugwej: najty uslovyq, pry kotor¥x suwestvugt symmetryçn¥e poloΩytel\- no opredelenn¥e matryc¥ P, Q1 , Q2 takye, çto ISSN 1027-3190. Ukr. mat. Ωurn., 2010, t. 62, # 11 1456 A. O. YHNAT|EV C PCT – P + Q1 = 0 (19) y A PT + PA + Q2 = 0. (20) UmnoΩaq obe çasty uravnenyq (19) na 2 y preobrazuq levug çast\, poluçaem ( ) ( )C E P C ET − + + ( ) ( )C E P C ET + − + 2 1Q = 0. (21) Poskol\ku edynyca ne qvlqetsq sobstvenn¥m çyslom matryc¥ C, matryc¥ C – – E y CT – E qvlqgtsq nev¥roΩdenn¥my, sledovatel\no, suwestvugt (C – – E)−1 y ( )C ET − −1 , pryçem oçevydno ( )C ET − −1 = ( )C E T −( )−1 . (22) UmnoΩym obe çasty matryçnoho ravenstva (21) sleva na ( )C ET − −1 y sprava na ( )C E− −1 . V rezul\tate budem ymet\ P C E C E( ) ( )+ − −1 + ( ) ( )C E C E PT T− +−1 + += 2 1 1 1( ) ( )C E Q C ET − −− − = 0. Oboznaçym D = (C + E) ( )C E− −1 , Q∗ = 2 1 1( ) ( )C E Q C E T −( ) −− − . Zametym [21, s. 268, 618], çto matryca D qvlqetsq hurvycevoj. Uçyt¥vaq ravenstvo (22), ubeΩdaemsq, çto C ymeet sobstvenn¥e çysla, leΩawye v otkr¥tom edynyçnom kruhe kompleksnoj ploskosty, tohda y tol\ko tohda, kohda v¥polnqetsq mat- ryçnoe uravnenye Lqpunova PD + D PT + Q∗ = 0, (23) hde D — hurvyceva matryca. S uçetom toho, çto matryca C ymeet vyd (18), v¥- razym matryc¥ D y Q∗ neposredstvenno çerez B : D = D B( ) = ( )2 1E B B+ − , Q∗ = Q B Q∗( , )1 = 2 1 1 1( )B Q BT− − . Teper\ perejdem k yzuçenyg sluçaq, kohda v systeme (5), (6) x ∈R2 , A ∈ ×R2 2 , B ∈ ×R2 2 . Pryvedem dva opredelenyq yz [22] y dve lemm¥, dokazann¥e v [22]. Opredelenye 5. Puçkom σα A D,[ ] matryc A y D nazovem odnopara- metryçeskoe semejstvo matryc α A + ( )1 − α D , hde α — dejstvytel\n¥j parametr yz otrezka [0, 1]. Opredelenye 6. Puçok σα A D,[ ] naz¥vaetsq hurvycev¥m, esly matryca α A + ( )1 − α D qvlqetsq hurvycevoj pry lgbom α ∈ [0, 1]. Lemma 1. Dlq toho çtob¥ suwestvovaly symmetryçn¥e poloΩytel\no op- redelenn¥e matryc¥ P , Q1 , Q2 takye, çto odnovremenno v¥polnqgtsq mat- ryçn¥e ravenstva (20) y (23), neobxodymo y dostatoçno, çtob¥ puçky σα A D,[ ] y σα A D, −  1 b¥ly hurvycev¥my. Lemma 2. Dlq toho çtob¥ suwestvovaly symmetryçn¥e poloΩytel\no op- redelenn¥e matryc¥ P , Q1 , Q2 takye , çto odnovremenno v¥polnqgtsq matryçn¥e ravenstva (20) y (23), neobxodymo y dostatoçno, çtob¥ matryc¥ AD y AD−1 ne ymely dejstvytel\n¥x otrycatel\n¥x sobstvenn¥x znaçenyj. ISSN 1027-3190. Ukr. mat. Ωurn., 2010, t. 62, # 11 O SUWESTVOVANYY FUNKCYY LQPUNOVA V VYDE KVADRATYÇNOJ FORMÁ… 1457 Yspol\zuq lemm¥ 1 y 2, poluçaem sledugwye teorem¥. Teorema 3. Esly v systeme dyfferencyal\n¥x uravnenyj s ympul\sn¥m voz- dejstvyem (5), (6) matryc¥ A y B takov¥, çto puçky σα A D,[ ] y σα A , D−  1 , hde D = ( )2 1E B B+ − , qvlqgtsq hurvycev¥my, to nulevoe reßenye system¥ (5), (6) πksponencyal\no ustojçyvo pry lgbom v¥bore τi , i = 1, 2, … . Teorema 4. Esly v systeme dyfferencyal\n¥x uravnenyj s ympul\sn¥m voz- dejstvyem (5), (6) A y B takov¥ , çto matryc¥ A D y AD−1 , hde D = = ( )2 1E B B+ − , ne ymegt dejstvytel\n¥x otrycatel\n¥x sobstvenn¥x zna- çenyj, to nulevoe reßenye system¥ (5), (6) πksponencyal\no ustojçyvo pry lgbom v¥bore τi , i = 1, 2, … . 4. Prymer. Dlq yllgstracyy poluçenn¥x rezul\tatov rassmotrym v ka- çestve prymera systemu (5), (6), v kotoroj n = 2, A = − − −     1 1 1 3 , B = 1 3 2 3 2 2− −             . PokaΩem, çto suwestvugt poloΩytel\no opredelenn¥e kvadratyçn¥e form¥ P, Q y R takye, çto v¥polnqgtsq uslovyq (10), (11), y nulevoe reßenye system¥ (5), (6) πksponencyal\no ustojçyvo nezavysymo ot v¥bora τi i = 1, 2, … . Perv¥j sposob. Najdem proyzvedenyq matryc AB y BA: AB = − − −     − −             1 1 1 3 1 3 2 3 2 2 = − −            5 2 7 2 7 2 9 2 , BA = 1 3 2 3 2 2 1 1 1 3 − −             − − −     = − −            5 2 7 2 7 2 9 2 . Poskol\ku AB = BA, na osnovanyy teorem¥=1 poluçaem, çto dejstvytel\no su- westvugt poloΩytel\no opredelenn¥e kvadratyçn¥e form¥ P, Q y R takye, çto v¥polnqgtsq uslovyq (10), (11), y nulevoe reßenye system¥ (5), (6) πkspo- nencyal\no ustojçyvo nezavysymo ot v¥bora τi , i = 1, 2, … . Vtoroj sposob. Tak kak n = 2, moΩno vospol\zovat\sq teoremoj=4. Dlq πtoho dostatoçno pokazat\, çto matryc¥ AD y AD−1 ne ymegt dejstvytel\- n¥x otrycatel\n¥x sobstvenn¥x znaçenyj, hde D = ( )2 1E B B+ − . Proverym πto. Dlq πtoho posledovatel\no naxodym 2E + B = 3 3 2 3 2 0−             , B−1 = − −    8 6 6 4 , D = ( )2 1E B B+ − = − −    15 12 12 9 , AD = 27 21 21 15− −     , ISSN 1027-3190. Ukr. mat. Ωurn., 2010, t. 62, # 11 1458 A. O. YHNAT|EV D−1 = 1 3 3 4 4 5− −     , AD−1 = − −            7 3 3 3 11 3 . Matryc¥ AD y AD−1 ymegt kratn¥e sobstvenn¥e znaçenyq (sootvetstvenno 6 y 2 3/ ), kotor¥e ne qvlqgtsq otrycatel\n¥my, çto y sledovalo dokazat\. 1. Samojlenko A. M., Perestgk N. A. Dyfferencyal\n¥e uravnenyq s ympul\sn¥m vozdejstvyem. – Kyev: Vywa ßk., 1987. – 288 s. 2. Haddad W. M., Chellaboina V., Nersesov S. G. Impulsive and hybrid dynamical systems: stability, dissipativity, and control. – Princeton: Princeton Univ. Press, 2006. – 520 p. 3. Hladylyna R. Y., Yhnat\ev A. O. O neobxodym¥x y dostatoçn¥x uslovyqx asymptotyçeskoj ustojçyvosty dlq ympul\sn¥x system // Ukr. mat. Ωurn. – 2003. – 55, # 8. – S. 1035 – 1043. 4. Sl¥n\ko V. Y. Lynejn¥e matryçn¥e neravenstva y ustojçyvost\ dvyΩenyq ympul\sn¥x system // Dop. NAN Ukra]ny. – 2008. – # 4. – S. 68 – 71. 5. Yhnat\ev A. O. Metod funkcyj Lqpunova v zadaçax ustojçyvosty reßenyj system dyfferencyal\n¥x uravnenyj s ympul\sn¥m vozdejstvyem // Mat. sb. – 2003. – 194, # 10. – S. 117 – 132. 6. Bojçuk A. A., Perestgk N. A., Samojlenko A. M. Peryodyçeskye reßenyq ympul\sn¥x dyfferencyal\n¥x system v krytyçeskyx sluçaqx // Dyfferenc. uravnenyq. – 1991. – 27, # 9. – S. 1516 – 1521. 7. Ignatyev A. O., Ignatyev O. A., Soliman A. A. Asymptotic stability and instability of the solutions of systems with impulse action // Math. Notes. – 2006. – 80, # 4. – P. 491 – 499. 8. Hristova Snezhana G. Razumikhin method and cone valued Lyapunov functions for impulsive differential equations with ‘supremum’ // Int. J. Dynam. Syst. Different. Equat. – 2009. – 2, # 3 – 4. – P. 223 – 236. 9. Hristova S. G. Integral stability in terms of two measures for impulsive functional differential equations // Math. Comput. Modelling. – 2010. – 51, # 1 – 2. – P. 100 – 108. 10. Ignatyev A. O., Ignatyev O. A. Investigation of the asymptotic stability of solutions of systems with impulse effect // Int. J. Math. Game Theory Algebra. – 2008. – 17, # 3. – P. 141 – 164. 11. Fu Xilin, Li Xiaodi. New results on pulse phenomena for impulsive differential systems with variable moments // Nonlinear Anal. – 2009. – 71, # 7 – 8. – P. 2976 – 2984. 12. Li Xiaodi, Chen Zhang. Stability properties for Hopfield neural networks with delays and impulsive perturbations // Nonlinear Anal. Real World Appl. – 2009. – 10, # 5. – P. 3253 – 3265. 13. Ignatyev A. O., Ignatyev O. A. Stability of solutions of systems with impulse effect // Progress in Nonlinear Analysis Research. – New York: Nova Sci. Publ., 2009. – P. 363 – 389. 14. Perestgk N. A., Samojlenko A. M., StanΩyckyj A. N. O suwestvovanyy peryodyçeskyx reßenyj nekotor¥x klassov system dyfferencyal\n¥x uravnenyj so sluçajn¥m ympul\sn¥m vozdejstvyem // Ukr. mat. Ωurn. – 2001. – 53, # 8. – S. 1061 – 1079. 15. Hurhula S. Y., Perestgk N. A. Ob ustojçyvosty poloΩenyq ravnovesyq ympul\sn¥x system // Mat. fyzyka. – 1982. – V¥p. 31. – S. 9 – 14. 16. Ahmed N. U. Dynamic systems and control with applications. – New Jersey: World Sci., 2006. – 452 p. 17. Ewens W. J. Mathematical population genetics. I. Theoretical introduction. – Second ed. – New York: Springer, 2004. – 420 p. 18. Haddad W. M., Chellaboina V. S., Hui Q. Nonnegative and compartmental dynamical systems. – Princeton; Oxford: Princeton Univ. Press, 2010. – 608 p. 19. Thieme H. R. Mathematics in population biology. – Princeton; Oxford: Princeton Univ. Press, 2003. – 544 p. 20. Elaydi S. An introduction to difference equations. – Third Ed. – New York: Springer, 2005. – 544 p. 21. Hinrichsen D., Pritchard A. J. Mathematical systems theory I. Modelling, state space analysis, stability and robustness. – Berlin: Springer, 2005. – 808 p. 22. Shorten R. N., Narendra K. S. Necessary and sufficient conditions for the existence of a common quadratic Lyapunov function for a finite number of stable second order linear time–invariant systems // Int. J. Adapt. Control and Signal Processing. – 2002. – 16, # 10. – P. 709 – 728. Poluçeno 28.06.10 ISSN 1027-3190. Ukr. mat. Ωurn., 2010, t. 62, # 11