Well-posed reduction formulas for the q-Kampé-de-Fériet function
By using the limiting case of Watson’s q-Whipple transformation as n → ∞, we investigate the transformations of the nonterminating q-Kampé-de-Fériet series. Further, new formulas for the transformations and well-posed reduction formulas are established for the basic Clausen hypergeometric series. Se...
Збережено в:
| Дата: | 2010 |
|---|---|
| Автори: | , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2010
|
| Назва видання: | Український математичний журнал |
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/166263 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Well-posed reduction formulas for the q-Kampé-de-Fériet function / W. Chu, W. Zhang // Український математичний журнал. — 2010. — Т. 62, № 11. — С. 1538–1554. — Бібліогр.: 10 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Резюме: | By using the limiting case of Watson’s q-Whipple transformation as n → ∞, we investigate the transformations of the nonterminating q-Kampé-de-Fériet series. Further, new formulas for the transformations and well-posed reduction formulas are established for the basic Clausen hypergeometric series. Several remarkable formulas are also found for new function classes beyond the q-Kampé-de-Fériet function. |
|---|