Well-posed reduction formulas for the q-Kampé-de-Fériet function
By using the limiting case of Watson’s q-Whipple transformation as n → ∞, we investigate the transformations of the nonterminating q-Kampé-de-Fériet series. Further, new formulas for the transformations and well-posed reduction formulas are established for the basic Clausen hypergeometric series. Se...
Saved in:
| Date: | 2010 |
|---|---|
| Main Authors: | Chu, W., Zhang, W. |
| Format: | Article |
| Language: | English |
| Published: |
Інститут математики НАН України
2010
|
| Series: | Український математичний журнал |
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/166263 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Well-posed reduction formulas for the q-Kampé-de-Fériet function / W. Chu, W. Zhang // Український математичний журнал. — 2010. — Т. 62, № 11. — С. 1538–1554. — Бібліогр.: 10 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
π-Formulae from dual series of the Dougall theorem
by: W. Chu
Published: (2022) -
A Connection Formula for the q-Confluent Hypergeometric Function
by: Morita, T.
Published: (2013) -
Convergence rates and finite-dimensional approximation for a class of ill-posed variational inequalities
by: Nguyen Buong
Published: (1997) -
Reduction of the self-dual Yang-Mills equations. I. The Poincaré group
by: Zhdanov, R.Z., et al.
Published: (1995) -
Weyl's theorem for algebrascally wF(p,r,q) operators with p,q>0 and q≥1
by: Rashid, M.H.M.
Published: (2011)