Функції від оператора зсуву та їх застосування до різницевих рівнянь

Исследуется изображение для функций от оператора сдвига, действующего на ограниченные последовательности элементов банахова пространства. Получена оценка для ограниченного решения линейного разностного уравнения в банаховом пространстве. Для двух типов дифференциальных уравнений в банаховом простран...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Український математичний журнал
Datum:2010
1. Verfasser: Чайковський, А.В.
Format: Artikel
Sprache:Ukrainian
Veröffentlicht: Інститут математики НАН України 2010
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/166275
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Функції від оператора зсуву та їх застосування до різницевих рівнянь / А.В. Чайковський // Український математичний журнал. — 2010. — Т. 62, № 10. — С. 1408–1419. — Бібліогр.: 17 назв. — укр.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:Исследуется изображение для функций от оператора сдвига, действующего на ограниченные последовательности элементов банахова пространства. Получена оценка для ограниченного решения линейного разностного уравнения в банаховом пространстве. Для двух типов дифференциальных уравнений в банаховом пространстве приведены достаточные условия того, что их ограниченные решения являются пределами ограниченных решений соответствующих разностных уравнений. Получены оценки для скорости сходимости. We study the representation for functions of shift operator acting upon bounded sequences of elements of a Banach space. An estimate is obtained for the bounded solution of a linear difference equation in the Banach space. For two types of differential equations in Banach spaces, we present sufficient conditions for their bounded solutions to be limits of bounded solutions of the corresponding difference equations and establish estimates for the rate of convergence.
ISSN:1027-3190