Solvability of boundary-value problems for nonlinear fractional differential equations
We consider the existence of nontrivial solutions of the boundary-value problems for nonlinear fractional differential equations Dαu(t) + λ[f(t,u(t)) + q(t)]=0, 0 < t < 1, u(0) = 0, u(1) = βu(η), where λ > 0 is a parameter, 1 < α ≤ 2, η ∈ (0, 1), β∈R=(−∞,+∞), βη α−1 ≠ 1, Dα is a Riem...
Saved in:
| Published in: | Український математичний журнал |
|---|---|
| Date: | 2010 |
| Main Author: | |
| Format: | Article |
| Language: | English |
| Published: |
Інститут математики НАН України
2010
|
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/166286 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Solvability of boundary-value problems for nonlinear fractional differential equations / Y. Guo // Український математичний журнал. — 2010. — Т. 62, № 9. — С. 1211–1219. — Бібліогр.: 13 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-166286 |
|---|---|
| record_format |
dspace |
| spelling |
Guo, Y. 2020-02-18T16:53:18Z 2020-02-18T16:53:18Z 2010 Solvability of boundary-value problems for nonlinear fractional differential equations / Y. Guo // Український математичний журнал. — 2010. — Т. 62, № 9. — С. 1211–1219. — Бібліогр.: 13 назв. — англ. 1027-3190 https://nasplib.isofts.kiev.ua/handle/123456789/166286 512.662.5 We consider the existence of nontrivial solutions of the boundary-value problems for nonlinear fractional differential equations Dαu(t) + λ[f(t,u(t)) + q(t)]=0, 0 < t < 1, u(0) = 0, u(1) = βu(η), where λ > 0 is a parameter, 1 < α ≤ 2, η ∈ (0, 1), β∈R=(−∞,+∞), βη α−1 ≠ 1, Dα is a Riemann–Liouville differential operator of order α, f:(0,1)×R→R is continuous, f may be singular for t = 0 and/or t = 1, and q(t) : [0, 1] → [0, +∞) We give some sufficient conditions for the existence of nontrivial solutions to the formulated boundary-value problems. Our approach is based on the Leray–Schauder nonlinear alternative. In particular, we do not use the assumption of nonnegativity and monotonicity of f essential for the technique used in almost all available literature. Розглянуто існування нетривіальних розв'язків крайової задачі для нелінійних дробових диференціальних рівнянь Dαu(t) + λ[f(t,u(t)) + q(t)]=0, 0 < t < 1, u(0) = 0, u(1) = βu(η), де λ > 0 — параметр, 1 < α ≤ 2, η ∈ (0,1), β ∈ R=(−∞,+∞), βηα−1 ≠ 1,Dα —диференціальний оператор Рімана-Ліувілля порядку α, функція f:(0,1)×R→R неперервна, до того ж f може бути сингулярною при t=0 та (або) q(t) : [0,1]→[0,+∞) неперервна. Наведено деякі достатні умови для існування нетривіальних розв'язків вказаних крайових задач. Застосований у дослідженнях підхід базується на нелінійній альтернативі Лерея - Шаудера. Зокрема, не використовується припущення про невід'ємність, а також монотонність функції f , що було істотним для методики, застосованої майже в усіх описаних у літературі дослідженнях. The authors were supported financially by the NNSF of China (10801088). en Інститут математики НАН України Український математичний журнал Статті Solvability of boundary-value problems for nonlinear fractional differential equations Розв'язність крайових задач для нелінійних дробових диференціальних рівнянь Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Solvability of boundary-value problems for nonlinear fractional differential equations |
| spellingShingle |
Solvability of boundary-value problems for nonlinear fractional differential equations Guo, Y. Статті |
| title_short |
Solvability of boundary-value problems for nonlinear fractional differential equations |
| title_full |
Solvability of boundary-value problems for nonlinear fractional differential equations |
| title_fullStr |
Solvability of boundary-value problems for nonlinear fractional differential equations |
| title_full_unstemmed |
Solvability of boundary-value problems for nonlinear fractional differential equations |
| title_sort |
solvability of boundary-value problems for nonlinear fractional differential equations |
| author |
Guo, Y. |
| author_facet |
Guo, Y. |
| topic |
Статті |
| topic_facet |
Статті |
| publishDate |
2010 |
| language |
English |
| container_title |
Український математичний журнал |
| publisher |
Інститут математики НАН України |
| format |
Article |
| title_alt |
Розв'язність крайових задач для нелінійних дробових диференціальних рівнянь |
| description |
We consider the existence of nontrivial solutions of the boundary-value problems for nonlinear fractional differential equations
Dαu(t) + λ[f(t,u(t)) + q(t)]=0, 0 < t < 1, u(0) = 0, u(1) = βu(η),
where λ > 0 is a parameter, 1 < α ≤ 2, η ∈ (0, 1), β∈R=(−∞,+∞), βη α−1 ≠ 1, Dα is a Riemann–Liouville differential operator of order α, f:(0,1)×R→R is continuous, f may be singular for t = 0 and/or t = 1, and q(t) : [0, 1] → [0, +∞) We give some sufficient conditions for the existence of nontrivial solutions to the formulated boundary-value problems. Our approach is based on the Leray–Schauder nonlinear alternative. In particular, we do not use the assumption of nonnegativity and monotonicity of f essential for the technique used in almost all available literature.
Розглянуто існування нетривіальних розв'язків крайової задачі для нелінійних дробових диференціальних рівнянь
Dαu(t) + λ[f(t,u(t)) + q(t)]=0, 0 < t < 1, u(0) = 0, u(1) = βu(η),
де λ > 0 — параметр, 1 < α ≤ 2, η ∈ (0,1), β ∈ R=(−∞,+∞), βηα−1 ≠ 1,Dα —диференціальний оператор Рімана-Ліувілля порядку α, функція f:(0,1)×R→R неперервна, до того ж f може бути сингулярною при t=0 та (або) q(t) : [0,1]→[0,+∞) неперервна. Наведено деякі достатні умови для існування нетривіальних розв'язків вказаних крайових задач. Застосований у дослідженнях підхід базується на нелінійній альтернативі Лерея - Шаудера. Зокрема, не використовується припущення про невід'ємність, а також монотонність функції f , що було істотним для методики, застосованої майже в усіх описаних у літературі дослідженнях.
|
| issn |
1027-3190 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/166286 |
| citation_txt |
Solvability of boundary-value problems for nonlinear fractional differential equations / Y. Guo // Український математичний журнал. — 2010. — Т. 62, № 9. — С. 1211–1219. — Бібліогр.: 13 назв. — англ. |
| work_keys_str_mv |
AT guoy solvabilityofboundaryvalueproblemsfornonlinearfractionaldifferentialequations AT guoy rozvâznístʹkraiovihzadačdlânelíníinihdrobovihdiferencíalʹnihrívnânʹ |
| first_indexed |
2025-12-02T02:26:37Z |
| last_indexed |
2025-12-02T02:26:37Z |
| _version_ |
1850861379947331584 |