Банахова алгебра, порожденная конечным числом поликерноператоров Бергмана, непрерывными коэффициентами и конечной группой сдвигов
Вивчається банахова алгебра, породжена скінченним числом полікерноператорів Бергмана з неперервними коефіцієнтами, яка розширена операторами зваженого зсуву, що утворюють скінченну групу. За допомогою ізометричного перетворення оператори алгебри зображуються у вигляді матричного оператора, утвореног...
Saved in:
| Published in: | Український математичний журнал |
|---|---|
| Date: | 2010 |
| Main Author: | |
| Format: | Article |
| Language: | Russian |
| Published: |
Інститут математики НАН України
2010
|
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/166288 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Банахова алгебра, порожденная конечным числом поликерноператоров Бергмана, непрерывными коэффициентами и конечной группой сдвигов / В.А. Мозель // Український математичний журнал. — 2010. — Т. 62, № 9. — С. 1247–1255. — Бібліогр.: 12 назв. — рос. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-166288 |
|---|---|
| record_format |
dspace |
| spelling |
Мозель, В.А. 2020-02-18T16:55:31Z 2020-02-18T16:55:31Z 2010 Банахова алгебра, порожденная конечным числом поликерноператоров Бергмана, непрерывными коэффициентами и конечной группой сдвигов / В.А. Мозель // Український математичний журнал. — 2010. — Т. 62, № 9. — С. 1247–1255. — Бібліогр.: 12 назв. — рос. 1027-3190 https://nasplib.isofts.kiev.ua/handle/123456789/166288 517.983 Вивчається банахова алгебра, породжена скінченним числом полікерноператорів Бергмана з неперервними коефіцієнтами, яка розширена операторами зваженого зсуву, що утворюють скінченну групу. За допомогою ізометричного перетворення оператори алгебри зображуються у вигляді матричного оператора, утвореного скінченним числом взаємно доповшовальних проекторів із коефіцієнтами, котрі є теплицевими матрицями-функціями скінченного порядку. Завдяки властивостям полікерноператорів Бергмана одержано ефективний критерій фредгольмо-вості операторів розглянутої алгебри. We study the Banach algebra generated by a finite number of Bergman polykernel operators with continuous coefficients that is extended by operators of weighted shift that form a finite group. By using an isometric transformation, we represent the operators of the algebra in the form of a matrix operator formed by a finite number of mutually complementary projectors whose coefficients are Toeplitz matrix functions of finite order. Using properties of Bergman polykernel operators, we obtain an efficient criterion for the operators of the algebra considered to be Fredholm operators. ru Інститут математики НАН України Український математичний журнал Статті Банахова алгебра, порожденная конечным числом поликерноператоров Бергмана, непрерывными коэффициентами и конечной группой сдвигов Banach algebra generated by a finite number of Bergman polykernel operators, continuous coefficients, and a finite group of shifts Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Банахова алгебра, порожденная конечным числом поликерноператоров Бергмана, непрерывными коэффициентами и конечной группой сдвигов |
| spellingShingle |
Банахова алгебра, порожденная конечным числом поликерноператоров Бергмана, непрерывными коэффициентами и конечной группой сдвигов Мозель, В.А. Статті |
| title_short |
Банахова алгебра, порожденная конечным числом поликерноператоров Бергмана, непрерывными коэффициентами и конечной группой сдвигов |
| title_full |
Банахова алгебра, порожденная конечным числом поликерноператоров Бергмана, непрерывными коэффициентами и конечной группой сдвигов |
| title_fullStr |
Банахова алгебра, порожденная конечным числом поликерноператоров Бергмана, непрерывными коэффициентами и конечной группой сдвигов |
| title_full_unstemmed |
Банахова алгебра, порожденная конечным числом поликерноператоров Бергмана, непрерывными коэффициентами и конечной группой сдвигов |
| title_sort |
банахова алгебра, порожденная конечным числом поликерноператоров бергмана, непрерывными коэффициентами и конечной группой сдвигов |
| author |
Мозель, В.А. |
| author_facet |
Мозель, В.А. |
| topic |
Статті |
| topic_facet |
Статті |
| publishDate |
2010 |
| language |
Russian |
| container_title |
Український математичний журнал |
| publisher |
Інститут математики НАН України |
| format |
Article |
| title_alt |
Banach algebra generated by a finite number of Bergman polykernel operators, continuous coefficients, and a finite group of shifts |
| description |
Вивчається банахова алгебра, породжена скінченним числом полікерноператорів Бергмана з неперервними коефіцієнтами, яка розширена операторами зваженого зсуву, що утворюють скінченну групу. За допомогою ізометричного перетворення оператори алгебри зображуються у вигляді матричного оператора, утвореного скінченним числом взаємно доповшовальних проекторів із коефіцієнтами, котрі є теплицевими матрицями-функціями скінченного порядку. Завдяки властивостям полікерноператорів Бергмана одержано ефективний критерій фредгольмо-вості операторів розглянутої алгебри.
We study the Banach algebra generated by a finite number of Bergman polykernel operators with continuous coefficients that is extended by operators of weighted shift that form a finite group. By using an isometric transformation, we represent the operators of the algebra in the form of a matrix operator formed by a finite number of mutually complementary projectors whose coefficients are Toeplitz matrix functions of finite order. Using properties of Bergman polykernel operators, we obtain an efficient criterion for the operators of the algebra considered to be Fredholm operators.
|
| issn |
1027-3190 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/166288 |
| citation_txt |
Банахова алгебра, порожденная конечным числом поликерноператоров Бергмана, непрерывными коэффициентами и конечной группой сдвигов / В.А. Мозель // Український математичний журнал. — 2010. — Т. 62, № 9. — С. 1247–1255. — Бібліогр.: 12 назв. — рос. |
| work_keys_str_mv |
AT mozelʹva banahovaalgebraporoždennaâkonečnymčislompolikernoperatorovbergmananepreryvnymikoéfficientamiikonečnoigruppoisdvigov AT mozelʹva banachalgebrageneratedbyafinitenumberofbergmanpolykerneloperatorscontinuouscoefficientsandafinitegroupofshifts |
| first_indexed |
2025-12-02T04:30:30Z |
| last_indexed |
2025-12-02T04:30:30Z |
| _version_ |
1850861510156353536 |