Estimation of a distribution function by an indirect sample
The problem of estimation of a distribution function is considered in the case where the observer has access only to a part of the indicator random values. Some basic asymptotic properties of the constructed estimates are studied. The limit theorems are proved for continuous functionals related to t...
Saved in:
| Published in: | Український математичний журнал |
|---|---|
| Date: | 2010 |
| Main Authors: | , , |
| Format: | Article |
| Language: | English |
| Published: |
Інститут математики НАН України
2010
|
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/166300 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Estimation of a distribution function by an indirect sample / P. Babilua, E. Nadaraya, G. Sokhadze // Український математичний журнал. — 2010. — Т. 62, № 12. — С. 1642–1658. — Бібліогр.: 5 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Summary: | The problem of estimation of a distribution function is considered in the case where the observer has access only to a part of the indicator random values. Some basic asymptotic properties of the constructed estimates are studied. The limit theorems are proved for continuous functionals related to the estimation of F^n(x) in the space C[a, 1 - a], 0 < a < 1/2.
Розглянуто задачу оцінювання функції розподілу у випадку, коли спостерігач має доступ лише до деяких індикаторних випадкових значень. Вивчено деякі базові асимптотичні властивості побудованих оцінок. У статгі доведено граничні теореми для неперервних функціоналів щодо оцінки Fn(x) у просторі C[a,1−a],0 < a < 1/2.
|
|---|---|
| ISSN: | 1027-3190 |