Deformations of circle-valued Morse functions on surfaces

Let M be a smooth connected orientable compact surface and let Fcov(M,S1) be a space of all Morse functions f : M → S₁ without critical points on ∂M such that, for any connected component V of ∂M, the restriction f : V → S₁ is either a constant map or a covering map. The space Fcov(M,S₁) is endowed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2010
1. Verfasser: Maksymenko, S.I.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2010
Schriftenreihe:Український математичний журнал
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/166305
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Deformations of circle-valued Morse functions on surfaces / S.I. Maksymenko // Український математичний журнал. — 2010. — Т. 62, № 10. — С. 1360–1366. — Бібліогр.: 6 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:Let M be a smooth connected orientable compact surface and let Fcov(M,S1) be a space of all Morse functions f : M → S₁ without critical points on ∂M such that, for any connected component V of ∂M, the restriction f : V → S₁ is either a constant map or a covering map. The space Fcov(M,S₁) is endowed with the C ∞-topology. We present the classification of connected components of the space Fcov(M,S₁). This result generalizes the results obtained by Matveev, Sharko, and the author for the case of Morse functions locally constant on ∂M.