C2 Property of Column Finite Matrix Rings

A ring R is called a right C2 ring if any right ideal of R isomorphic to a direct summand of RR is also a direct summand. The ring R is called a right C3 ring if any sum of two independent summands of R is also a direct summand. It is well known that a right C2 ring must be a right C3 ring but the c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Український математичний журнал
Datum:2014
Hauptverfasser: Liang Shen, Jianlong Chen
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2014
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/166322
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:C2 Property of Column Finite Matrix Rings / Liang Shen, Jianlong Chen // Український математичний журнал. — 2014. — Т. 66, № 12. — С. 1718–1722. — Бібліогр.: 6 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-166322
record_format dspace
spelling Liang Shen
Jianlong Chen
2020-02-18T17:56:19Z
2020-02-18T17:56:19Z
2014
C2 Property of Column Finite Matrix Rings / Liang Shen, Jianlong Chen // Український математичний журнал. — 2014. — Т. 66, № 12. — С. 1718–1722. — Бібліогр.: 6 назв. — англ.
1027-3190
https://nasplib.isofts.kiev.ua/handle/123456789/166322
512.5
A ring R is called a right C2 ring if any right ideal of R isomorphic to a direct summand of RR is also a direct summand. The ring R is called a right C3 ring if any sum of two independent summands of R is also a direct summand. It is well known that a right C2 ring must be a right C3 ring but the converse assertion is not true. The ring R is called J -regular if R/J(R) is von Neumann regular, where J(R) is the Jacobson radical of R. Let N be the set of natural numbers and let Λ be any infinite set. The following assertions are proved to be equivalent for a ring R: (1) CFMFMN(R) is a right C2 ring; (2) CFMFMΛ(R) is a right C2 ring; (3) CFMFMN(R) is a right C3 ring; (4) CFMFMΛ(R) is a right C3 ring; (5) CFMFMN(R) is a J -regular ring and Mn(R) is a right C2 (or right C3) ring for all integers n≥1.
Кільце R називається правим C2 кільцем, якщо будь-який правий ідеал R, що є ізоморФним до прямого доданка в RR, також є прямим доданком. Кільце R називається правим C3 кільцем, якщо будь-яка сума двох незалежних доданків в RR також є прямим доданком. Відомо, що праве C2 кільце має бути правим C3 кільцем, але прoтилежне твердження є невірним. Кільце R називається J -регулярним, якщо R/J(R) є регулярним у сенсі фон Ноймана, де J(R) — радикал Якобсона для R. Нехай N — множина натуральних чисел, а Λ — деяка нескінченна множина. Доведено, що наступні твердження є еквівалентними для кільця R: (1) CFMFMN(R) — праве C2 кільце; (2) CFMFMΛ(R) — праве C2 кільце; (3) CFMFMN(R) — праве C3 кільце; (4) CFMFMΛ(R) — праве C3 кільце; (5) CFMFMN(R) — J-регулярне кільце, а Mn(R) — праве C2 (або праве C3) кільце для всіх цілих n > 1.
The first author is supported by NSF of Jiangsu Province (No.BK20130599) and the Project-sponsored by SRF for ROCS, SEM. The second author is supported by NSF of China (No. 11371089), NSF of Jiangsu Province (No.20141327), and Specialized Research Fund for the Doctoral Program of Higher Education (No.20120092110020).
en
Інститут математики НАН України
Український математичний журнал
Короткі повідомлення
C2 Property of Column Finite Matrix Rings
C2 властивість стовпчикових скiнченних матричних кiлець
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title C2 Property of Column Finite Matrix Rings
spellingShingle C2 Property of Column Finite Matrix Rings
Liang Shen
Jianlong Chen
Короткі повідомлення
title_short C2 Property of Column Finite Matrix Rings
title_full C2 Property of Column Finite Matrix Rings
title_fullStr C2 Property of Column Finite Matrix Rings
title_full_unstemmed C2 Property of Column Finite Matrix Rings
title_sort c2 property of column finite matrix rings
author Liang Shen
Jianlong Chen
author_facet Liang Shen
Jianlong Chen
topic Короткі повідомлення
topic_facet Короткі повідомлення
publishDate 2014
language English
container_title Український математичний журнал
publisher Інститут математики НАН України
format Article
title_alt C2 властивість стовпчикових скiнченних матричних кiлець
description A ring R is called a right C2 ring if any right ideal of R isomorphic to a direct summand of RR is also a direct summand. The ring R is called a right C3 ring if any sum of two independent summands of R is also a direct summand. It is well known that a right C2 ring must be a right C3 ring but the converse assertion is not true. The ring R is called J -regular if R/J(R) is von Neumann regular, where J(R) is the Jacobson radical of R. Let N be the set of natural numbers and let Λ be any infinite set. The following assertions are proved to be equivalent for a ring R: (1) CFMFMN(R) is a right C2 ring; (2) CFMFMΛ(R) is a right C2 ring; (3) CFMFMN(R) is a right C3 ring; (4) CFMFMΛ(R) is a right C3 ring; (5) CFMFMN(R) is a J -regular ring and Mn(R) is a right C2 (or right C3) ring for all integers n≥1. Кільце R називається правим C2 кільцем, якщо будь-який правий ідеал R, що є ізоморФним до прямого доданка в RR, також є прямим доданком. Кільце R називається правим C3 кільцем, якщо будь-яка сума двох незалежних доданків в RR також є прямим доданком. Відомо, що праве C2 кільце має бути правим C3 кільцем, але прoтилежне твердження є невірним. Кільце R називається J -регулярним, якщо R/J(R) є регулярним у сенсі фон Ноймана, де J(R) — радикал Якобсона для R. Нехай N — множина натуральних чисел, а Λ — деяка нескінченна множина. Доведено, що наступні твердження є еквівалентними для кільця R: (1) CFMFMN(R) — праве C2 кільце; (2) CFMFMΛ(R) — праве C2 кільце; (3) CFMFMN(R) — праве C3 кільце; (4) CFMFMΛ(R) — праве C3 кільце; (5) CFMFMN(R) — J-регулярне кільце, а Mn(R) — праве C2 (або праве C3) кільце для всіх цілих n > 1.
issn 1027-3190
url https://nasplib.isofts.kiev.ua/handle/123456789/166322
citation_txt C2 Property of Column Finite Matrix Rings / Liang Shen, Jianlong Chen // Український математичний журнал. — 2014. — Т. 66, № 12. — С. 1718–1722. — Бібліогр.: 6 назв. — англ.
work_keys_str_mv AT liangshen c2propertyofcolumnfinitematrixrings
AT jianlongchen c2propertyofcolumnfinitematrixrings
AT liangshen c2vlastivístʹstovpčikovihskinčennihmatričnihkilecʹ
AT jianlongchen c2vlastivístʹstovpčikovihskinčennihmatričnihkilecʹ
first_indexed 2025-12-07T15:29:09Z
last_indexed 2025-12-07T15:29:09Z
_version_ 1850863884190089216