О теореме Джексона для периодических функций в метрических пространствах с интегральной метрикой. II

У просторах Lψ(Tm) періодичних функцій з метрикою ρ(f,0)ψ=∫Tmψ(|f(x)|)dx, де ψ — функція типу модуля неперервності, досліджено пряму теорему Джексона у випадку апроксимації тригонометричними поліномами. Доведено, що пряма теорема Джексона має місце тоді і тільки тоді, коли нижній показник розтягненн...

Full description

Saved in:
Bibliographic Details
Published in:Український математичний журнал
Date:2011
Main Author: Пичугов, С.А.
Format: Article
Language:Russian
Published: Інститут математики НАН України 2011
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/166389
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:О теореме Джексона для периодических функций в метрических пространствах с интегральной метрикой. II / С.А. Пичугов // Український математичний журнал. — 2011. — Т. 63, № 11. — С. 1524–1533. — Бібліогр.: 7 назв. — рос.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:У просторах Lψ(Tm) періодичних функцій з метрикою ρ(f,0)ψ=∫Tmψ(|f(x)|)dx, де ψ — функція типу модуля неперервності, досліджено пряму теорему Джексона у випадку апроксимації тригонометричними поліномами. Доведено, що пряма теорема Джексона має місце тоді і тільки тоді, коли нижній показник розтягнення функції ψ не дорівнює нулеві. In the spaces Lψ(Tm) of periodic functions with metric ρ(f,0)ψ=∫Tmψ(|f(x)|)dx , where ψ is a function of the type of modulus of continuity, we study the direct Jackson theorem in the case of approximation by trigonometric polynomials. It is proved that the direct Jackson theorem is true if and only if the lower dilation index of the function ψ is not equal to zero
ISSN:1027-3190