Q -permutable subgroups of finite groups
A subgroup H of a group G is called Q-permutable in G if there exists a subgroup B of G such that (1) G=HB and (2) if H1 is a maximal subgroup of H containing HQG, then H1B=BH1<G, where HQG is the largest permutable subgroup of G contained in H. In this paper we prove that: Let F be a saturated f...
Збережено в:
| Дата: | 2011 |
|---|---|
| Автори: | , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2011
|
| Назва видання: | Український математичний журнал |
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/166390 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Q -permutable subgroups of finite groups / Zh. Pu, L. Miao // Український математичний журнал. — 2011. — Т. 63, № 11. — С. 1534–1543. — Бібліогр.: 16 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Резюме: | A subgroup H of a group G is called Q-permutable in G if there exists a subgroup B of G such that (1) G=HB and (2) if H1 is a maximal subgroup of H containing HQG, then H1B=BH1<G, where HQG is the largest permutable subgroup of G contained in H. In this paper we prove that: Let F be a saturated formation containing U and G be a group with a normal subgroup H such that G/H∈F. If every maximal subgroup of every noncyclic Sylow subgroup of F∗(H) having no supersolvable supplement in G is Q-permutable in G, then G∈F. |
|---|