Теорема Скитовича - Дармуа для конечных абелевых групп
Нехай X — скiнченна абелева група, ξi,i=1,2,...,n,n≥2, — незалежнi випадковi величини зi значеннями в X i розподiлами μi,αij,i,j=1,2,...,n, — автоморфiзми X. Доведено, що iз незалежностi n лiнiйних форм Lj=∑ni=1αijξi випливає, що всi μi — зрушення розподiлiв Хаара деякої пiдгрупи групи X. Ця теорема...
Saved in:
| Published in: | Український математичний журнал |
|---|---|
| Date: | 2011 |
| Main Author: | |
| Format: | Article |
| Language: | Russian |
| Published: |
Інститут математики НАН України
2011
|
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/166399 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Теорема Скитовича - Дармуа для конечных абелевых группе / И.П. Мазур // Український математичний журнал. — 2011. — Т. 63, № 11. — С. 1524–1533. — Бібліогр.: 16 назв. — рос. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Summary: | Нехай X — скiнченна абелева група, ξi,i=1,2,...,n,n≥2, — незалежнi випадковi величини зi значеннями в X i розподiлами μi,αij,i,j=1,2,...,n, — автоморфiзми X. Доведено, що iз незалежностi n лiнiйних форм Lj=∑ni=1αijξi випливає, що всi μi — зрушення розподiлiв Хаара деякої пiдгрупи групи X. Ця теорема є аналогом теореми Скiтовича – Дармуа для скiнченних абелевих груп.
Let X be a finite Abelian group, let ξi,i=1,2,...,n,n≥2, be independent random variables with values in X and distributions μi, and let αij,i,j=1,2,...,n, be automorphisms of X. We prove that the independence of n linear forms Lj=∑ni=1αijξi implies that all μi are shifts of the Haar distributions on some subgroups of the group X. This theorem is an analog of the Skitovich – Darmois theorem for finite Abelian groups
|
|---|---|
| ISSN: | 1027-3190 |