Effect of Temperature on the Corrosion Behaviours of L360QCS in the Environments Containing Elemental Sulphur and H₂S/CO₂

The effect of temperature on the corrosion behaviours of L360QCS in H₂S, CO₂ and elemental sulphur environments are investigated. The corrosion weight-loss rate, microscopy, chemical compositions and phase compositions of corrosion products are studied by means of the weight-loss analysis, SEM and X...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2012
Автори: Shuqi Zheng, Chunyu Li, Changfeng Chen
Формат: Стаття
Мова:English
Опубліковано: Інститут металофізики ім. Г.В. Курдюмова НАН України 2012
Назва видання:Металлофизика и новейшие технологии
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/167703
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Effect of Temperature on the Corrosion Behaviours of L360QCS in the Environments Containing Elemental Sulphur and H₂S/CO₂ / Shuqi Zheng, Chunyu Li, Changfeng Chen // Металлофизика и новейшие технологии. — 2012. — Т. 34, № 1. — С. 57-63. — Бібліогр.: 8 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-167703
record_format dspace
spelling nasplib_isofts_kiev_ua-123456789-1677032025-02-09T16:00:32Z Effect of Temperature on the Corrosion Behaviours of L360QCS in the Environments Containing Elemental Sulphur and H₂S/CO₂ Влияние температуры на режимы коррозии L360QCS в средах, содержащих атомарную серу и H₂S/CO₂ Shuqi Zheng Chunyu Li Changfeng Chen Дефекты кристаллической решётки The effect of temperature on the corrosion behaviours of L360QCS in H₂S, CO₂ and elemental sulphur environments are investigated. The corrosion weight-loss rate, microscopy, chemical compositions and phase compositions of corrosion products are studied by means of the weight-loss analysis, SEM and XRD techniques. As shown, the corrosion rate increased greatly with an increase of the temperature, and the corrosion scale is dropped off easily because of the weak adhesion force between the matrix and the corrosion products. The composition and structure analysed by energy-dispersive x-ray spectroscopy (EDS) and XRD show that the corrosion product scales are composed of cubic FeS and little tetragonal FeS. Исследовано влияние температуры на режимы коррозии L360QCS в атмосферах H₂S, CO₂ и атомарной серы. Скорость коррозии, измеряемая по потере веса, микроскопия, химический и фазовый состав продуктов коррозии определялись анализом потери веса, СЭМ и рентгеноструктурным анализом (РСА). Показано, что скорость коррозии сильно возрастает с температурой, и коррозионная окалина легко отпадает благодаря слабой силе адгезии между матрицей и продуктами коррозии. Исследования состава и структуры методами рентгеноспектрального электронно-зондового микроанализа и РСА показали, что окалины продуктов реакции состоят из кубического FeS и небольшой части тетрагонального FeS. Досліджено вплив температури на режими корозії L360QCS в атмосфері H₂S, CO₂ та атомарної сірки. Швидкість корозії, яка вимірюється за втратами ваги, мікроскопія, хемічний та фазовий склад продуктів корозії визначалися аналізою втрати ваги, СЕМ та рентґеноструктурною аналізою (РСА). Показано, що швидкість корозії сильно збільшується з температурою, і корозійна жужелиця легко відпадає через слабку силу адгезії між матрицею та продуктами корозії. Дослідження складу та структури методами рентґеноспектральної електронно-зондової мікроаналізи та РСА показали, що жужелиці продуктів реакції складаються з кубічного FeS та незначної частки тетрагонального FeS. This study is funded by the National Nature Science Foundation of China (No. 50871122). 2012 Article Effect of Temperature on the Corrosion Behaviours of L360QCS in the Environments Containing Elemental Sulphur and H₂S/CO₂ / Shuqi Zheng, Chunyu Li, Changfeng Chen // Металлофизика и новейшие технологии. — 2012. — Т. 34, № 1. — С. 57-63. — Бібліогр.: 8 назв. — англ. 1024-1809 PACS numbers:61.72.Dd, 61.72.Ff,61.72.Hh,68.35.Np,68.37.Hk,81.65.Kn, 82.45.Bb https://nasplib.isofts.kiev.ua/handle/123456789/167703 en Металлофизика и новейшие технологии application/pdf Інститут металофізики ім. Г.В. Курдюмова НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Дефекты кристаллической решётки
Дефекты кристаллической решётки
spellingShingle Дефекты кристаллической решётки
Дефекты кристаллической решётки
Shuqi Zheng
Chunyu Li
Changfeng Chen
Effect of Temperature on the Corrosion Behaviours of L360QCS in the Environments Containing Elemental Sulphur and H₂S/CO₂
Металлофизика и новейшие технологии
description The effect of temperature on the corrosion behaviours of L360QCS in H₂S, CO₂ and elemental sulphur environments are investigated. The corrosion weight-loss rate, microscopy, chemical compositions and phase compositions of corrosion products are studied by means of the weight-loss analysis, SEM and XRD techniques. As shown, the corrosion rate increased greatly with an increase of the temperature, and the corrosion scale is dropped off easily because of the weak adhesion force between the matrix and the corrosion products. The composition and structure analysed by energy-dispersive x-ray spectroscopy (EDS) and XRD show that the corrosion product scales are composed of cubic FeS and little tetragonal FeS.
format Article
author Shuqi Zheng
Chunyu Li
Changfeng Chen
author_facet Shuqi Zheng
Chunyu Li
Changfeng Chen
author_sort Shuqi Zheng
title Effect of Temperature on the Corrosion Behaviours of L360QCS in the Environments Containing Elemental Sulphur and H₂S/CO₂
title_short Effect of Temperature on the Corrosion Behaviours of L360QCS in the Environments Containing Elemental Sulphur and H₂S/CO₂
title_full Effect of Temperature on the Corrosion Behaviours of L360QCS in the Environments Containing Elemental Sulphur and H₂S/CO₂
title_fullStr Effect of Temperature on the Corrosion Behaviours of L360QCS in the Environments Containing Elemental Sulphur and H₂S/CO₂
title_full_unstemmed Effect of Temperature on the Corrosion Behaviours of L360QCS in the Environments Containing Elemental Sulphur and H₂S/CO₂
title_sort effect of temperature on the corrosion behaviours of l360qcs in the environments containing elemental sulphur and h₂s/co₂
publisher Інститут металофізики ім. Г.В. Курдюмова НАН України
publishDate 2012
topic_facet Дефекты кристаллической решётки
url https://nasplib.isofts.kiev.ua/handle/123456789/167703
citation_txt Effect of Temperature on the Corrosion Behaviours of L360QCS in the Environments Containing Elemental Sulphur and H₂S/CO₂ / Shuqi Zheng, Chunyu Li, Changfeng Chen // Металлофизика и новейшие технологии. — 2012. — Т. 34, № 1. — С. 57-63. — Бібліогр.: 8 назв. — англ.
series Металлофизика и новейшие технологии
work_keys_str_mv AT shuqizheng effectoftemperatureonthecorrosionbehavioursofl360qcsintheenvironmentscontainingelementalsulphurandh2sco2
AT chunyuli effectoftemperatureonthecorrosionbehavioursofl360qcsintheenvironmentscontainingelementalsulphurandh2sco2
AT changfengchen effectoftemperatureonthecorrosionbehavioursofl360qcsintheenvironmentscontainingelementalsulphurandh2sco2
AT shuqizheng vliânietemperaturynarežimykorroziil360qcsvsredahsoderžaŝihatomarnuûseruih2sco2
AT chunyuli vliânietemperaturynarežimykorroziil360qcsvsredahsoderžaŝihatomarnuûseruih2sco2
AT changfengchen vliânietemperaturynarežimykorroziil360qcsvsredahsoderžaŝihatomarnuûseruih2sco2
first_indexed 2025-11-27T18:58:20Z
last_indexed 2025-11-27T18:58:20Z
_version_ 1849971081819979776
fulltext 57 PACS numbers:61.72.Dd, 61.72.Ff,61.72.Hh,68.35.Np,68.37.Hk,81.65.Kn, 82.45.Bb Effect of Temperature on the Corrosion Behaviours of L360QCS in the Environments Containing Elemental Sulphur and H2S/CO2 Shuqi Zheng, Chunyu Li, and Changfeng Chen China University of Petroleum, Department of Materials Science and Engineering, 102249 Beijing, China The effect of temperature on the corrosion behaviours of L360QCS in H2S, CO2 and elemental sulphur environments are investigated. The corrosion weight-loss rate, microscopy, chemical compositions and phase compositions of corrosion products are studied by means of the weight-loss analysis, SEM and XRD techniques. As shown, the corrosion rate increased greatly with an increase of the temperature, and the corrosion scale is dropped off easily be- cause of the weak adhesion force between the matrix and the corrosion prod- ucts. The composition and structure analysed by energy-dispersive x-ray spectroscopy (EDS) and XRD show that the corrosion product scales are com- posed of cubic FeS and little tetragonal FeS. Досліджено вплив температури на режими корозії L360QCS в атмосфері H2S, CO2 та атомарної сірки. Швидкість корозії, яка вимірюється за втра- тами ваги, мікроскопія, хемічний та фазовий склад продуктів корозії ви- значалися аналізою втрати ваги, СЕМ та рентґеноструктурною аналізою (РСА). Показано, що швидкість корозії сильно збільшується з температу- рою, і корозійна жужелиця легко відпадає через слабку силу адгезії між матрицею та продуктами корозії. Дослідження складу та структури мето- дами рентґеноспектральної електронно-зондової мікроаналізи та РСА по- казали, що жужелиці продуктів реакції складаються з кубічного FeS та незначної частки тетрагонального FeS. Исследовано влияние температуры на режимы коррозии L360QCS в атмо- сферах H2S, CO2 и атомарной серы. Скорость коррозии, измеряемая по по- тере веса, микроскопия, химический и фазовый состав продуктов корро- зии определялись анализом потери веса, СЭМ и рентгеноструктурным анализом (РСА). Показано, что скорость коррозии сильно возрастает с температурой, и коррозионная окалина легко отпадает благодаря слабой силе адгезии между матрицей и продуктами коррозии. Исследования со- става и структуры методами рентгеноспектрального электронно-зондово- го микроанализа и РСА показали, что окалины продуктов реакции состо- Металлофиз. новейшие технол. / Metallofiz. Noveishie Tekhnol. 2012, т. 34, № 1, сс. 57—63 Оттиски доступны непосредственно от издателя Фотокопирование разрешено только в соответствии с лицензией © 2012 ИМФ (Институт металлофизики им. Г. В. Курдюмова НАН Украины) Напечатано в Украине. 58 Shuqi ZHENG, Chunyu LI, and Changfeng CHEN ят из кубического FeS и небольшой части тетрагонального FeS. Key words: elemental sulphur, corrosion, L360QCS, microstructure. (Received July 9, 2011) 1. INTRODUCTION More and more sour oil and gas fields containing higher partial pres- sure H2S and CO2 are being exploited for sweet fields being depleted and higher oil price. The pipeline used in the environments containing high pressure H2S are often corroded, especially in the case of ele- mental sulphur existence in the environment. The sulphur will be dis- solved out in high H2S partial pressure environment as the solubility of sulphur in solution decreases with the decrease of pressure and tem- perature from bottom to top of oil or gas reservoir [1]. The corrosion problem is the key point to the development of acid gas or oil fields in the environment containing high H2S/CO2 pressure, elemental sul- phur, and salinity brine. A concern in the production and transportation sour oil and gas is the corrosion caused by the acid gases CO2 and H2S. Many measure- ments have been taken to mitigate H2S and CO2 corrosion, such as us- ing corrosion inhibitor, stainless steel and resistant HIC pipeline [2— 5]. At present, carbon steel is in general more cost-effective for oil and gas facilities and hence is the most widely used material option [1]. However, a few reports involve in the role of the temperature in the corrosion of L360QCS in the environment of H2S/CO2 and salinity brine as well as elemental sulphur existence. L360QCS is one of the low alloy carbon steels, which are widely used in the gathering system in oil or gas field containing H2S and CO2 gas- es. Its service temperature is almost lower than 90°C, which is below the sulphur melting point (112.8°C). Therefore, in a given paper, the effect of temperature on the L360QCS corrosion was studied below 90°C. 2. EXPERIMENTAL The test samples were cut from L360QCS pipeline steel. Their chemical compositions (wt.%) are as follow: C–0.13, Si–0.4, Mn–1.5, P– 0.02, S–0.003, Cr–0.03, Mo–0.1, Ni–0.3, Ti–0.04, Fe–balance. The metallographic structure of L360QCS is tempered sorbitol. The test solution was prepared by simulating some oil gas field in China. The total mineralization of the solution is 67900 mg/l, and the mass concentration of cations is 2.61⋅104 mg/l, while the anionic mass EFFECT OF TEMPERATURE ON THE CORROSION BEHAVIOURS OF L360QCS 59 concentration is 4.18⋅104 mg/l. The water type is CaCl2 with the pH 7.97. The H2S and CO2 partial pressures are 1.5 MPa and 1.0 MPa, respectively. The elemental sulphur was used at the ratio of 10 g per litre solution to simulate the deposited environment. The corrosion be- haviours of L360QCS at different temperatures were studied. The simulation experiments were conducted during 72 hours at 30°C, 50°C and 90°C. Three standard corrosion coupons are cut from L360QCS pipeline. Each coupon was polished to 800 grits abrasive paper. The samples were carefully weighted after acetone washing. The corrosion progress with no oxygen participation is run at the high temperature and high- pressure reaction autoclave, in which a special holder fixes the sam- ples. After the experiment, the samples were taken out from the reaction autoclave and cleaned with ethyl alcohol before drying. The corrosion weight loss method is used to research the effect of temperature on the corrosion behaviours of L360QCS in the environments containing ele- mental sulphur and H2S/CO2, and SEM, EDS and XRD are used to ana- lyse the corrosion production scales. 3. RESULT AND DISCUSSION 3.1. Effect of Temperature on the Corrosion Rate Figure 1 shows the corrosion rate of L360QCS at different tempera- tures. It was shown that the corrosion rate of L360QCS increased quickly with the increase of test temperature. The rate is 14 mm/a at 30°C, it reaches 50.5 mm/a at 50°C, and the rate rushes to 120.9 mm/a at 90°C. Therefore, in the wet H2S/CO2 environment with 10 g/l ele- Fig. 1. The corrosion rates of L360QCS at different temperatures. 60 Shuqi ZHENG, Chunyu LI, and Changfeng CHEN mental sulphur, the increase of temperature speeded up the corrosion rate rapidly even at the temperature lower than sulphur melting point. The accelerated corrosion rate was also certificated by means of elec- trochemical method with the temperature increasing from 30°C to 80°C in sulphide corrosion environment [6]. The temperature raises the slope coefficient of Tafel anticathode curve. Meanwhile, the cath- ode reaction changed and the corrosion potential became more positive. Therefore, the temperature improves both anode and cathode reac- tions. 3.2. Effect of Temperature on Macromorphology From the results above, we found that the temperature greatly affect- ed the corrosion behaviours of carbon steel in the environment. Fig- ure 2 shows the macromorphology of corrosion production of L360QCS at different temperatures and Fig. 3 shows the macromorphology of the matrix of homologous samples. It was shown that there was an ob- vious change in the corrosion shape with the increase of the tempera- ture, the sample shape can keep the pervious shape after the corrosion at 30°C. However, it was far different from the basics shape after cor- rosion at 90°C. It was also found that the morphologies of corrosion products are different at different temperatures. At the temperature of 30°C, the scale of corrosion production is very thin but compact, and it is not easy to exfoliate. There is lots of pitting on the surface of matrix, espe- cially on the region around the edge of the sample. When it comes to 50°C, the scale becomes thicker, but much of the corrosion products exfoliate from the matrix, the inner layer is much more looser and thinner than those of at 30°C. The corrosion took on a uniform corro- sion characteristics. When the temperature is raised to 90°C, the cor- rosion reaction is much more acute, most of the corrosion products dropped off from the sample. From the picture (c) in Fig. 2, we can see that there is only about a half of the sample left for the heavy corro- Fig. 2. The macromorphology of corrosion products of L360QCS formed at different temperatures: 30°C (a), 50°C (b), 90°C (c). EFFECT OF TEMPERATURE ON THE CORROSION BEHAVIOURS OF L360QCS 61 sion. 3.3. Effect of Temperature on Micromorphology and Composition In order to study the effect of temperature on micromorphology and composition of corrosion products of L360QCS, SEM and EDS were used to investigate the corrosion products. The micromorphology of the corrosion products on the surface of L360QCS formed at different temperatures is shown in Fig. 4. At 30°C, the corrosion production scales are very flat and adhere to the matrix tightly. However, there are many irregular potholes in the film. When it comes to 50°C, the corrosion product scale becomes thicker, but the bond of the film is so weak that the part of corrosion scale is dropped off. From Fig. 4, it was found that the corrosion scales were composed of two layers. The outer layer can be easily torn off and the inner one is too thin and loose to protect the matrix of the sample, but the compositions are nearly the same. The outer layer is much more compact and consisting of regular FeS crystals. When the temperature reaches 90°C, the adhesive force between the corrosion production and matrix turns weaker, so, almost all of the products are dropped off. Fig. 3. The macromorphology of matrix after removing the corrosion products L360QS formed at different temperatures: 30°C (a), 50°C (b), 90°C (c). Fig. 4. The micromorphologies of corrosion products L360QS formed at dif- ferent temperatures: 30°C (a), 50°C (b), 90°C (c). 62 Shuqi ZHENG, Chunyu LI, and Changfeng CHEN 3.4. Effect of Temperature on the Structure of the Corrosion Produc- tion The phase compositions of the corrosion production were analysed by x-ray diffraction. The results of the x-ray diffraction are shown in Fig. 5. The corrosion production of L360QCS pipeline are similar at different temperatures, which are composed of cubic crystal structure FeS and little square crystal structure FeS. The corrosion of carbon steel in the environment of H2O/CO2 with- out sulphur has been researched by G. Firro [7] and K. Masamura [8]. If 2 2CO H S 200P P < , the corrosion is mainly H2S attacked. FeS film will be the first produced when the carbon steel is dipped into the corrosion solution, which will prevent the formation of FeCO3 film. In our test, 2 2CO H S 1.0 1.5 0.67P P = = . Therefore, the corrosion reaction is mainly H2S attacking especially in the environment containing sulphur depo- sition. The results of our test confirmed the point and there is no FeCO3 in the production. 4. CONCLUSIONS 1. When the temperature is lower than sulphur melting point, the cor- rosion rate of L360QCS increases linearly dependent on the tempera- ture. 2. At a higher temperature, the corrosion scale turn thicker and the adhesive force between the corrosion scale and metal matrix turns weaker. 3. At low temperature, the corrosion type is mainly local corrosion, when it comes to 50°C, the corrosion type becomes an uniform attack; at higher temperature of 90°C there are many corrosion grooves on the Fig. 5. XRD pattern of L360QCS after corrosion at different temperatures: 30°C (a), 50°C (b). EFFECT OF TEMPERATURE ON THE CORROSION BEHAVIOURS OF L360QCS 63 sample surface. 4. The results of XRD show that the corrosion products are composed of cubic FeS crystal and less tetragonal FeS crystal. Temperature has little effect on the chemical composition of the corrosion production. ACKNOWLEDGMENT This study is funded by the National Nature Science Foundation of China (No. 50871122). REFERENCES 1. G. F. Zhai and X. P. Li, Xinjiang Petroleum Geology, 26, No. 3: 89 (2005) (in Chinese). 2. M. Singer, B. Brown, A. Camacho, and S. Nesic, NACE International Corrosion Conference and Expo (March 11—15, 2007) (Nashville, TN: 2007), Paper 07661. 3. S. Serna and A. Fragiel, NACE Corrosion(March 12—16, 2006) (San Diego, CA: 2006), Paper 06654. 4. R. L. Martin and P. D. Logan, NACE Corrosion (March 12—16, 2006) (San Die- go, CA: 2006), Paper 06367. 5. Z. F. Yin, W. Z. Zhao, Z. Q. Bai et al., Electrochim. Acta, 53: 3690 (2008). 6. B. Yang, S. B. Tian, and S. L. Zhao, Corrosion Science and Protection Technolo- gy, 16, No. 6: 67 (2004) (in Chinese). 7. G. Fierro, G. M. Ingo, and Fi Mancla, Corrosion, 10: 814 (1989). 8. K. Masamura, S. Hashizume, and J. Sakai, Corrosion, 6: 359 (1987).