Flexible composite scintillators based on ZnWO₄ micro- and nanopowders

Nano-sized and micro-sized ZnWO₄ powders were obtained by different methods: hydrothermal synthesis with microwave heating, molten salt method, solid-state synthesis and сrushing of bulk crystals. Their morphological features were studied using transmission electron microscope and scanning electron...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2019
Hauptverfasser: Tinkova, V.S., Yakubovskaya, A.G., Tupitsyna, I.A., Abashin, S.L., Tretyak, S.O.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України 2019
Schriftenreihe:Технология и конструирование в электронной аппаратуре
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/167867
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Flexible composite scintillators based on ZnWO₄ micro- and nanopowders / V.S. Tinkova, A.G. Yakubovskaya, I.A. Tupitsyna, S.L. Abashin, A.N. Puzan, S.O. Tretyak // Технология и конструирование в электронной аппаратуре. — 2019. — № 1-2. — С. 40-49. — Бібліогр.: 26 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-167867
record_format dspace
spelling nasplib_isofts_kiev_ua-123456789-1678672025-02-09T15:32:19Z Flexible composite scintillators based on ZnWO₄ micro- and nanopowders Гибкие композиционные сцинтилляторы на основе микро- и нанопорошков ZnWO₄ Гнучкі та композиційні сцинтилятори на основі мікро- та нанопорошків ZnWO₄ Tinkova, V.S. Yakubovskaya, A.G. Tupitsyna, I.A. Abashin, S.L. Abashin, S.L. Tretyak, S.O. Материалы электроники Nano-sized and micro-sized ZnWO₄ powders were obtained by different methods: hydrothermal synthesis with microwave heating, molten salt method, solid-state synthesis and сrushing of bulk crystals. Their morphological features were studied using transmission electron microscope and scanning electron microscope. The obtained nano- and micro-sized powders were used as fillers for flexible composite scintillators. The silicon rubber was used as a binder. The luminescent characteristics and scintillation performance of composite scintillators were measured. The dependence of scintillation performance of flexible scintillators on the morphological features of ZnWO₄ nanocrystallites was demonstrated. The flexible composite scintillator based on zinc tungstate obtained by solid-state synthesis with lithium nitrate addition was obtained and investigated. Its scintillation performance was close to that of a ZnWO₄ single crystal. В настоящей работе проведены исследования, направленные на поиск эффективного способа получения порошка ZnWO₄ для разработки гибких композиционных сцинтилляторов с высокими функциональными характеристиками, такими как световой выход и уровень послесвечения. У даній роботі проведені дослідження, спрямовані на пошук ефективного способу отримання порошку ZnWO₄ для розробки гнучких композиційних сцинтиляторів з високими функціональними характеристиками, такими як світловий вихід і рівень післясвітіння. 2019 Article Flexible composite scintillators based on ZnWO₄ micro- and nanopowders / V.S. Tinkova, A.G. Yakubovskaya, I.A. Tupitsyna, S.L. Abashin, A.N. Puzan, S.O. Tretyak // Технология и конструирование в электронной аппаратуре. — 2019. — № 1-2. — С. 40-49. — Бібліогр.: 26 назв. — англ. 2225-5818 DOI: 10.15222/TKEA2019.1-2.40This https://nasplib.isofts.kiev.ua/handle/123456789/167867 539.1.074.3 : 62-492.2 : 546.47'78'21 en Технология и конструирование в электронной аппаратуре application/pdf Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Материалы электроники
Материалы электроники
spellingShingle Материалы электроники
Материалы электроники
Tinkova, V.S.
Yakubovskaya, A.G.
Tupitsyna, I.A.
Abashin, S.L.
Abashin, S.L.
Tretyak, S.O.
Flexible composite scintillators based on ZnWO₄ micro- and nanopowders
Технология и конструирование в электронной аппаратуре
description Nano-sized and micro-sized ZnWO₄ powders were obtained by different methods: hydrothermal synthesis with microwave heating, molten salt method, solid-state synthesis and сrushing of bulk crystals. Their morphological features were studied using transmission electron microscope and scanning electron microscope. The obtained nano- and micro-sized powders were used as fillers for flexible composite scintillators. The silicon rubber was used as a binder. The luminescent characteristics and scintillation performance of composite scintillators were measured. The dependence of scintillation performance of flexible scintillators on the morphological features of ZnWO₄ nanocrystallites was demonstrated. The flexible composite scintillator based on zinc tungstate obtained by solid-state synthesis with lithium nitrate addition was obtained and investigated. Its scintillation performance was close to that of a ZnWO₄ single crystal.
format Article
author Tinkova, V.S.
Yakubovskaya, A.G.
Tupitsyna, I.A.
Abashin, S.L.
Abashin, S.L.
Tretyak, S.O.
author_facet Tinkova, V.S.
Yakubovskaya, A.G.
Tupitsyna, I.A.
Abashin, S.L.
Abashin, S.L.
Tretyak, S.O.
author_sort Tinkova, V.S.
title Flexible composite scintillators based on ZnWO₄ micro- and nanopowders
title_short Flexible composite scintillators based on ZnWO₄ micro- and nanopowders
title_full Flexible composite scintillators based on ZnWO₄ micro- and nanopowders
title_fullStr Flexible composite scintillators based on ZnWO₄ micro- and nanopowders
title_full_unstemmed Flexible composite scintillators based on ZnWO₄ micro- and nanopowders
title_sort flexible composite scintillators based on znwo₄ micro- and nanopowders
publisher Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України
publishDate 2019
topic_facet Материалы электроники
url https://nasplib.isofts.kiev.ua/handle/123456789/167867
citation_txt Flexible composite scintillators based on ZnWO₄ micro- and nanopowders / V.S. Tinkova, A.G. Yakubovskaya, I.A. Tupitsyna, S.L. Abashin, A.N. Puzan, S.O. Tretyak // Технология и конструирование в электронной аппаратуре. — 2019. — № 1-2. — С. 40-49. — Бібліогр.: 26 назв. — англ.
series Технология и конструирование в электронной аппаратуре
work_keys_str_mv AT tinkovavs flexiblecompositescintillatorsbasedonznwo4microandnanopowders
AT yakubovskayaag flexiblecompositescintillatorsbasedonznwo4microandnanopowders
AT tupitsynaia flexiblecompositescintillatorsbasedonznwo4microandnanopowders
AT abashinsl flexiblecompositescintillatorsbasedonznwo4microandnanopowders
AT abashinsl flexiblecompositescintillatorsbasedonznwo4microandnanopowders
AT tretyakso flexiblecompositescintillatorsbasedonznwo4microandnanopowders
AT tinkovavs gibkiekompozicionnyescintillâtorynaosnovemikroinanoporoškovznwo4
AT yakubovskayaag gibkiekompozicionnyescintillâtorynaosnovemikroinanoporoškovznwo4
AT tupitsynaia gibkiekompozicionnyescintillâtorynaosnovemikroinanoporoškovznwo4
AT abashinsl gibkiekompozicionnyescintillâtorynaosnovemikroinanoporoškovznwo4
AT abashinsl gibkiekompozicionnyescintillâtorynaosnovemikroinanoporoškovznwo4
AT tretyakso gibkiekompozicionnyescintillâtorynaosnovemikroinanoporoškovznwo4
AT tinkovavs gnučkítakompozicíjníscintilâtorinaosnovímíkrotananoporoškívznwo4
AT yakubovskayaag gnučkítakompozicíjníscintilâtorinaosnovímíkrotananoporoškívznwo4
AT tupitsynaia gnučkítakompozicíjníscintilâtorinaosnovímíkrotananoporoškívznwo4
AT abashinsl gnučkítakompozicíjníscintilâtorinaosnovímíkrotananoporoškívznwo4
AT abashinsl gnučkítakompozicíjníscintilâtorinaosnovímíkrotananoporoškívznwo4
AT tretyakso gnučkítakompozicíjníscintilâtorinaosnovímíkrotananoporoškívznwo4
first_indexed 2025-11-27T10:40:12Z
last_indexed 2025-11-27T10:40:12Z
_version_ 1849939743068913664
fulltext Tekhnologiya i Konstruirovanie v Elektronnoi Apparature, 2019, No 1–2 40 ISSN 2225-5818 MATERIALS OF ELECTRONICS 1 UDC 539.1.074.3 : 62-492.2 : 546.47'78'21 V. S. TINKOVA1, A. G. YAKUBOVSKAYA1, I. A. TUPITSYNA1, S. L. ABASHIN2, A. N. PUZAN3, S. O. TRETYAK1 Ukraine, Kharkov, 1Institute for Scintillation Materials NAS of Ukraine; 2National Aerospace University “Kharkiv Aviation Institute”; 3SSI “Institute for Single Crystals” NAS of Ukraine E-mail: zvereva@isma.kharkov.ua FLEXIBLE COMPOSITE SCINTILLATORS BASED ON ZnWO4 MICRO- AND NANOPOWDERS There is now an ongoing research of effective technological methods for obtaining materials suitable for use in modern scintillation detectors (for nondestructive testing, digital radiography and X-ray, a, b, g and neutron registration). The creation of composite scintillators based on mi- cro- and nanoscale crystal powders [1] obtained by various methods [2—4] is a promising research direction in this field. It was expected that using nano-sized materi- als would allow developing qualitatively new scintillators with functional characteristics that would satisfy the modern requirements (spatial, spectrometric and temporal resolution, sensitiv- ity, radiation hardness, low afterglow) [5, 6]. The properties of nano-sized scintillation powders significantly depend on their size and morphology, and controlling this parameters allows producing scintillation detectors with high performance [7]. Zinc tungstate (ZnWO4) is a promising mate- rial that could be a successful replacement for cadmium tungstate which contains toxic cadmium. It is possible because ZnWO4 has the unique combination of properties (high density, high effective atomic number, small radiation length and scintillation performance) similar to those of cadmium tungstate. Therefore, ZnWO4 can be used in X-ray, gamma and neutron radiation Nano-sized and micro-sized ZnWO4 powders were obtained by different methods: hydrothermal synthesis with microwave heating, molten salt method, solid-state synthesis and сrushing of bulk crystals. Their morphological features were studied using transmission electron microscope and scanning electron microscope. The obtained nano- and micro-sized powders were used as fillers for flexible composite scintillators. The silicon rubber was used as a binder. The luminescent characteristics and scintillation performance of composite scintillators were measured. The dependence of scintillation performance of flexible scintillators on the morphological features of ZnWO4 nanocrystallites was demonstrated. The flexible composite scintillator based on zinc tungstate obtained by solid-state synthesis with lithium nitrate addition was obtained and investigated. Its scintillation performance was close to that of a ZnWO4 single crystal. Keywords: zinc tungstate, nano-sized crystals, micro-sized powders, composite scintillators, light output, afterglow. detectors in homeland security systems and for non-destructive testing. Thus, the primary task of the work was to choose the best method to produce ZnWO4 pow- der for development of high performance flexible composite scintillators. Research methodology ZnWO4 single crystals grown by Czochralski method [8] were used to obtain powders with different grains sizes. The crushing of ZnWO4 single crystals was carried out with laboratory mechanical mortar Retch RM 200. The following fractionation was carried out with vibratory sieve shaker Retch AS 200 using sieves No 0080, 0100, 0140, 0200, 0250. For the preparation of 0.1 M aqueous solu- tions Zn(NO3)2⋅6H2O (99.9%) and Na2WO4⋅2H2O (>99.9%) were used. Before the synthesis the solutions were mixed with a ratio of 1:1. The pH of the mixture was changed by addition of 30% NH3⋅H2O solution (99%). ZnWO4 powder was synthesized from the obtained mixture by microwave-hydrothermal method. ZnO (99.995%) and WO3 (99.995%) were used as starting materials for the synthesis of ZnWO4 scintillation powder by molten salt and solid-state methods. LiNO3⋅6H2O (99.9%) was used as a low- temperature solvent and as a mineralizer in molten salt and solid-state methods, respectively. Morphology of the nano-sized crystals was de- termined using transmission electron microscope DOI: 10.15222/TKEA2019.1-2.40 This work was supported by National Academy of Science of Ukraine through grant of young scientists’ project of NAS of Ukraine in 2017, contract No. 51-2017. Tekhnologiya i Konstruirovanie v Elektronnoi Apparature, 2019, No 1–2 41ISSN 2225-5818 MATERIALS OF ELECTRONICS 2 (TEM) EM-125 (SELMA, Ukraine). Electron accelerating voltage was 125 keV, the survey was carried out in the bright field mode, and the image was recorded by CCD matrix. The carbon films coated with water suspension of the investigated powders were used for electron microscopy. Morphology of the micro-sized crystals was determined using scanning electron microscope (SEM) REM-100U with energy dispersive attach- ment EDAR. X-ray diffraction study (XRD) was carried out using Siemens D500 automated powder diffrac- tometer (CuKaαradiation, Ni filter, 5° ≤ 2q ≤ 110°, D2q = 0.02°, delay time of 24 s per point). Rietveld refinement of obtained pattern was carried out with FullProf and WinPLOTR software packages [9]. Cell dimensions, anisotropic profile function, background function and systematic instrumental errors were taken into account. Flexible scintillation composite samples (∅30×2 mm) based on ZnWO4 powders obtained by different methods were prepared. The heat- resistant low molecular silicone rubber was used as a binder. The luminescent and scintillation char- acteristics of the composite samples were investi- gated. ZnWO4 and CdWO4 polished plates with size of 10×10×2 mm were used as references during the measurements of scintillation performances. Both reference plates were cut from crystals grown by Czochralski method. The light yield of CdWO4 was measured in [10] as 19500 ph/MeV. X-ray luminescence spectra were measured by spectrometric complex KSVU-23. REIS (Ua ≤ 40 keV, Ia ≤ 50 μA) X-ray source was used for excitation. Light output of the investigated composite samples was measured in scanning mode with respect to ZnWO4 and CdWO4 single crystals by the scheme which is presented in Fig. 1. The objective table 3 with investigated samples moves between the photodetector 5 and X-ray tube (fo- cal spot 0.8 mm) in a plane XY with a step of 3 mm, which can be changed in manual mode. X-ray transmission optical scheme was used during measure- ments. The different light collection conditions were considered. X-ray source (Ua = 100 keV, Ia = 1 mА) was used for excitation. The measurement error of the light output was 12%. The afterglow level was determined by means of a measuring set up which included a pulsed X-ray source RAPAN 200/100 (Ua =130—180 kV, irra- diation time 2 s), a control unit, a Si-photodiode S8594, a current-to-voltage converter, a multiplex- er, an analog-to-digital converter, and a computer with an appropriate software. The measurement error of the afterglow level was 10%. Experimental results and discussion Flexible composite scintillators based on ZnWO4 obtained by crushing of bulk crystals Micro- and nanocrystallites ZnWO4 used as fillers for composite scintillators were obtained by crushing of bulk crystals [11]. The advantages of the method are the high speed of the process and the simplicity of the milling hardware. The feature of the method is wide particles size distribution of resulting crystallites (from several nanometers to hundreds of micrometers). As a result of ZnWO4 single crystal crushing we obtained the following ratio of the particle size frac- tions: more than 280 μm was 4.5%; 140—280 μm was 33.5%; 80—140 μm was 26%, less than 80 μm was 36% [12]. The composite sample (further denoted as ZWO-30) based on as-crushed crystal was prepared. During the polymerization of the binder the sedimentation of ZnWO4 particles takes place. Large particles settle on the bottom of the mold for casting, while particles of several tens of nanometers remain in suspension forming a dense composite surface. SEM-evaluation of the composite scintillator surfaces has shown that ZnWO4 particles about 250 nm in size were located on the top side and particles with average size of 250 μm were on the bottom side of the composite sample. (Further these surfaces will be denoted as ZWO-30-250nm and ZWO-30-250μm, respectively.) The light output of the obtained samples was determined by two methods, i. e. the light output Fig. 1. Scheme of light output measurements: 1 — X-ray source; 2 —collimator; 3 —objective table; 4 —protective filter; 5 —photodetector; 6 —amplifier 6 5 4 3 2 1 X Y Y X Tekhnologiya i Konstruirovanie v Elektronnoi Apparature, 2019, No 1–2 42 ISSN 2225-5818 MATERIALS OF ELECTRONICS 3 was estimated by cathodoluminescence technique and measured under X-ray excitation. The technique for measuring light output under cathode excitation is described in [11]. It should be noted that the experimental conditions of light output estimation used in [11] have minimized the influence of light collection due to reflection-type optical scheme in the measurements of catodolu- minescence intensity. The light output was determined for the both sides of the sample (ZWO-30-250nm and ZWO-30-250μm) based on the cathodolumines- cence results. The penetration depth of the high- energy electron beam into the surface was very small and only luminescence of the surface layers was observed under irradiation. The light output of the ZWO-30-250nm (97 a. u.) was almost twice higher than that of the ZWO-30-250μm (45 a. u.) and the ZnWO4 single crystal (46 a. u.) [11]. The light output of the ZWO-30 under X-ray excitation was determined using the optical trans- mission scheme shown in Fig. 1. The light output of the ZWO-30 under X-ray excitation was mea- sured from both top and bottom sides (Table 1). The ZWO-30 sample and ZnWO4 single crystal reference were placed on a white diffuse reflector. The relative light outputs of ZWO-30-250μm and ZWO-30-250nm were 280% and 227% of ZnWO4 single crystal, respectively. It could be due to size gradient distribution of particles through the thickness of the composite samples (as a conse- quence of the sedimentation described above) [12]. As a result, the best light collection conditions for this measurement method were achieved on ZWO-30-250μm. Further in the article it will be shown that the change of light collection condi- tions shows significant effect on the light output of composite scintillators. The measurement results demonstrate that the described preparation method of scintillation pow- der allows obtaining composite scintillators based on ZnWO4 with high scintillation performance. However, mass production of such composite scin- tillators is expensive. Therefore, it is desirable to find ways of preparing ZnWO4 powder with good scintillation characteristics by passing the growth stage and the following crushing of a single crystal. Flexible composite scintillators based on ZnWO4 obtained by hydrothermal synthesis with micro- wave heating Hydrothermal synthesis with microwave heat- ing allows controlling all parameters of the reac- tion (time, temperature, pressure), which ensures homogeneous nucleation process under homoge- neous heating of the reaction mixture and yields in dispersion of high purity with a specified narrow particle size distribution [13]. The method also allows obtaining specified morphology of nano- crystals, which directly relates to the electronic structure, binding energy and surface energy [14]. The hydrothermal synthesis of zinc tungstate nanocrystals was carried out using microwave heat- ing of aqueous solutions of Zn(NO3)2⋅6H2O and Na2WO4⋅2H2O (pH = 6.5—9.5) at temperatures of 120—200°C for 30 min [14]. The results of XRD (Fig. 2) showed that the nucleation of ZnWO4 nanocrystals with a monoclinic wolframite struc- ture (JCDPS No 15-0774 [15]) begins at 120°C. The increase in temperature and pH accelerates the growth of the crystallites. The investigation of ZnWO4 nanopowders morphology using TEM showed that samples syn- thesized at pH = 9.5 and temperature of 120°C, consisted of “grain” nanoparticles with a size of 25—50 nm, while those synthesized at 200°C Fig. 2. X-ray diffraction patterns of ZnWO4 nanocrystals obtained by hydrothermal synthesis with microwave heating at pH = 9.5 and different temperature values 3 2 1 0 10 20 30 40 50 60 2q, ° In te ns it y, a. u . (0 10 ) (1 00 ) (0 11 ) (1 10 ) (1 11 ) (0 21 ) (2 00 ) (1 21 ) (0 22 ) (2 20 ) (1 12 ) (2 11 ) (1 30 ) (1 13 ) (3 11 ) (0 41 ) Table 1 The light output under X-ray excitation of composite scintillators based on ZnWO4 obtained by different methods Method Sample Light output, % Czochralski Polished ZnWO4 single crystal 100 Crushed crystal ZWO-30-250µm 280 ZWO-30-250nm 227 Hydrothermal synthesis with microwave heating ZWO-25g 16 ZWO-100r 23 ZWO-200r 30 Molten salt synthesis ZWO-MSМ 67 Solid-state synthesis ZWO-SSS 155 ZWO-SSS-LiNO3 272 Tekhnologiya i Konstruirovanie v Elektronnoi Apparature, 2019, No 1–2 43ISSN 2225-5818 MATERIALS OF ELECTRONICS 4 consisted of “rod” nanoparticles of 250—300 nm in length and 30 nm in diameter (Fig. 3). Such a preferential growth along one of the crystallo- graphic directions is explained by the anisotropic structure of ZnWO4. X-ray luminescence spectra investigation of the obtained powders showed the presence of a band with lmax ≈ 500 nm. This band is typical for ZnWO4 single crystals and is caused by the emission of self- trapped excitons in the WO6 6 - oxyanion complex [16]. Fig. 3 illustrates the dependence of X-ray luminescence intensity on the morphology (sizes) of nanopowders synthesized at different conditions. Emission intensity of the “grains” is nearly zero (curve 1), while for “rods” the luminescence inten- sity (curve 3) is typically high for ZnWO4. Similar dependences were observed in nanocrystals of dif- ferent oxygen-containing compounds [17—19]. Such a big difference between curve 1 and curve 3 could be explained by the fact that the decreasing of nanocrystal sizes leads to an increase in oxygen vacancies, which in turn causes the formation of WO6 octahedra with distorted structure (lumi- nescence centers with low probability of photon emission) [20]. It was shown that red luminescence is associated with the distorted complexes. The photoluminescence spectra of nano-sized ZnWO4 samples excited by irradiation with a wavelength of lex= 355 nm contain a red emission band at 700 nm (Fig. 4). The intensity of the red band increases with the decrease of the ZnWO4 nano- crystals size. At the same time the intensity of the red band for the samples annealed in air decreases, which indicates the healing of oxygen vacancies and decrease in concentration of distorted WO6 octahedra. As it was shown in [20], that annealing of ZnWO4 nanopowders in air leads to a significant increase in X-ray luminescence intensity of the “grains” and has virtually no effect on intensity of the “rods” (Fig. 5). 1 2 400 500 600 700 Wavelenght l, nm Fig. 4. Photoluminescence spectra of ZnWO4 “grains” before (1) and after annealing in air (2) In te ns it y, a . u. lex= 355 nm 8 6 4 2 0 3 2 1 400 450 500 550 600 650 Wavelenght l, nm In te ns it y, a . u. Fig. 3. X-ray luminescence spectra of ZnWO4 nanopowders obtained by hydrothermal synthesis with microwave heating at pH = 9.5 and different temperature values: 1 — 120°С; 2 — 160°С; 3 — 200°С 5 4 3 2 1 0 4 3 2 1 400 450 500 550 600 650 Wavelenght l, nm Fig. 5. X-ray luminescence spectra of ZnWO4 nanopowders: 1 —“grains”; 2 —“grains” after annealing; 3 —“rods”; 4 —“rods” after annealing In te ns it y, a . u. 4 3 2 1 0 Tekhnologiya i Konstruirovanie v Elektronnoi Apparature, 2019, No 1–2 44 ISSN 2225-5818 MATERIALS OF ELECTRONICS 5 Under X-ray excitation, the red luminescence is absent even in the samples with high oxygen vacancy concentration. A competing nonradiative relaxation channel is formed in WO6 octahedra before air annealing, which causes a decrease in the luminescence intensity of the main emission band. After air annealing, the concentration of the distorted WO6 octahedra decreases, simultaneously increasing the main band intensity. This could pos- sibly explain the increase in the intensity of the main band in X-ray luminescence spectrum after annealing the samples in air. Composite samples with sizes of 10×10×2 mm were based on the obtained ZnWO4 nanopowders. The light outputs of the composite samples were measured with reference to the ZnWO4 single crystal (10×10×2 mm). The results of the measure- ments are shown in Table 1 (ZWO-25g contained “grains” of 25 nm, ZWO-100r — “rods” of 100 nm in length, ZWO-200r — “rods” of 200 nm in length). The data in Table 1 show an increase of light output with the increase in nanoparticles size. However, the light output of the nanodispersed samples does not exceed 30% of that of the single crystal sample. Thus, this method does not ensure obtaining a scintillation material of the required quality. Flexible composite scintillators based on ZnWO4 obtained by molten salt synthesis Synthesizing nanomaterials using a low-temper- ature solvent offers the following advantages: the simplicity of the required equipment and a high efficiency of the particles obtained at tempera- tures below the melting point of the synthesized substance [21]. Single-phase nanocrystalline samples of the ZnWO4 scintillator were obtained by molten salt method (MSM) using a low-temperature LiNO3 solvent at 270°C for 6 and 16 hours [22]. The original sample was amorphous ZnWO4 obtained by co-precipitation method. Then, the precipitate was mixed with lithium nitrate in a ratio of 1:6 and 1:10. The investigation of powder morphology using TEM showed that the largest granules (100 nm) were synthesized at ZnWO4/LiNO3 ratio of 1:10 after synthesizing (annealing) for 16 hours (Fig. 6). The size of nanocrystals obtained at other synthesis conditions was less than 100 nm. Table 2 shows the XRD data and calculated on their basis unit cell parameters of ZnWO4 nanocrystals obtained under different synthesis conditions (different ZnWO4/LiNO3 ratios and different synthesis time periods). The crystal lattice of nanocrystals is markedly distorted in comparison with the ICDD database data for zinc tungstate ZnWO4 (JCDPS No 15-0774 [15]). This is particularly noticeable in the changing of the unit cell volume. There is a tendency for crystal lattice distortion to reduce (in particular, the lattice volume parameter V) with the increase of the synthesis time at the same lithium nitrate concentration. The similar influence of synthesis conditions on the crystal lattice parameters was reported in [23]. Table 2 Unit cell parameters of ZnWO4 nanocrystals obtained under different synthesis conditions, compared to the data for zinc tungstate presented in [15] Ratio ZnWO4:LiNO3/ time a, Å b, Å c, Å β,° V, Å3 1:6 / 6 h 4.68266(9) 5.75328(12) 4.94864(8) 90.6305(11) 133.311(4) 1:10 / 6 h 4.68258(9) 5.75424(12) 4.94881(8) 90.6352(12) 133.336(4) 1:6 / 16 h 4.68341(8) 5.74941(11) 4.94598(88) 90.6362(10) 133.171(4) 1:10 / 16 h 4.68340(9) 5.74908(11) 4.94544(8) 90.6386(10) 133.149(4) ZnWO4 [15] 4.69264 5.71546 4.92691 90.627 132.135 Fig. 6. TEM image of the nanopowder obtained by molten salt synthesis at the following conditions: ZnWO4/LiNO3 ratio of 1:10 after annealing for 16 hours Tekhnologiya i Konstruirovanie v Elektronnoi Apparature, 2019, No 1–2 45ISSN 2225-5818 MATERIALS OF ELECTRONICS 6 The X-ray luminescence spectra of the obtained powders show that nanosized crystal samples with less distorted crystal lattices demonstrate better scintillation performance. The highest lumines- cence intensity was demonstrated by the sample synthesized at the following conditions: ZnWO4/ LiNO3 ratio of 1:10 after annealing for 16 hours (Fig. 7). X-ray luminescence intensity of the obtained powders decreases with reduction in an- nealing time and concentration of low-temperature solvent. The light output under X-ray excitation and the afterglow level of composite scintillator based on the ZnWO4 powder obtained by the molten salt method (ZnWO4/LiNO3 = 1:10, 16 h) are shown in Table 1 (ZWO-MSM) and Table 3, respectively. The light output of the ZWO-MSМ sample was 67% of that of the ZnWO4 single crystal (see Table 1). However, the afterglow level of ZWO- MSМ is almost 2 times lower in the time range of 3—5 ms than that of the ZWO-30-250mm, which is very important for using these scintillators in computer tomography. The improvement of the afterglow level of the scintillators can be explained by the entry of lithium ions from the solvent into the ZnWO4 crystal lattice, thus compensating the uncontrolled impurities charge (in particular, trivalent metal ions). This leads to changes in the defect structure and, as a result, to disappearing of deep charge traps. A similar effect of the lithium impurities on the afterglow was observed for cadmium tungstate crystals [24]. Flexible composite scintillators based on ZnWO4 obtained by solid-state synthesis The most commonly used method for prepar- ing of micro-sized oxide powders is solid-state synthesis (SSS), which is quite simple in technical realization. The use of a low-melting salt as a mineralizer (up to 10 wt. %) is one of the ways to ac- celerate solid-state reactions. The min- eralizer reduces synthesis temperature, forms a melt, improves the diffusion of reagents and accelerates the growth of grains [25, 26]. As can be seen in the SEM images in Fig. 8, after 50 h long synthesis without 1 2 3 4 400 450 500 550 600 650 Wavelenght l, nm Fig. 7. The X-ray luminescence spectra of nanopowders obtained by molten salt synthesis under difference conditions (ratio ZnWO4:LiNO3, synthesis time): 1 — 1:10,16 h; 2 — 1:6,16 h; 3 —1:6, 6 h; 4 — 1:10, 6 h In te ns it y, a . u. 6000 4000 2000 0 Fig. 8. SEM images of ZnWO4 crystallites synthesized at 950°С for 50 hours without a mineralizer (a) and with LiNO3 (b) a) b) Table 3 The afterglow level of ZnWO4 composite scintillators under X-ray excitation Sample Granule sizes Afterglow level, %, after different periods of time 3 ms 5 ms 10 ms 20 ms Polished ZnWO4 single crystal — 0.19 0.11 0.13 0.07 ZWO-30-250µm 250 μm 0.14 0.103 0.068 0.045 ZWO-MSМ 100 nm 0.072 0.064 0.055 0.047 Tekhnologiya i Konstruirovanie v Elektronnoi Apparature, 2019, No 1–2 46 ISSN 2225-5818 MATERIALS OF ELECTRONICS 7 the mineralizer, the sizes of the obtained ZnWO4 grains were 0.5—2 μm, while after the synthesis under the same conditions but with the addition of lithium nitrate the sizes were 20—30 μm. Fig. 9 shows the samples location on the objec- tive table when measuring the light output under X-ray excitation. For clarity, the white diffuse reflector is shown in dark gray. The light output of the composite samples (estimated under X-ray exci- tation using the optical transmission scheme shown in Fig. 1) is presented in Fig. 10 and Table 4. The samples were placed on the objective table and the light output throughout the scintillation sample was measured at 3 mm step. The light out- put of the sample was determined as the average value over the entire area. Fig. 9. The location scheme of samples on an objective table when measuring light output under X-ray excitation: a — all samples are placed on a white diffusion reflector; b — all sides of the samples, except the top, are covered with a white diffusion reflector; c — only the crystals are covered with a white diffusion reflector (all sides except the top); d — only the crystals are covered with a white diffusion reflector (bottom side only) 1 — ZnWO4 single crystal (10×10×2 mm); 2 —CdWO4 single crystal (10×10×2 mm); 3— ZWO-30-250μm; 4—ZWO-SSS; 5 —ZWO-SSS-LiNO3 a) 1 3 4 5 2 1 3 4 5 2 b) 1 3 4 5 2 c) 1 3 4 5 2 d) Fig. 10. Light output area distribution of different samples: 1— single crystal ZnWO4; 2 — single crystal CdWO4; 3 — ZWO-30-250μm; 4 —ZWO-SSS; 5 —ZWO-SSS-LiNO3 L ig ht o ut pu t, a . u. Lenght W id th 1 2 3 4 5 600 400 200 0 0—100; 100—200; 200—300; 300—400; 400—500; 500—600; 600—700 Table 4 The light output under X-ray excitation of scintillation samples under different light collection conditions Light output collection conditions Light output, % CdWO4 single crystal ZnWO4 single crystal ZWO- 30-250 µm ZWO- SSS ZWO- SSS- LiNO3 All samples placed on white diffusion reflector 288 100 280 155 272 All the sides of the samples except the top were covered by white diffusion reflector 130 100 121 60 107 Only the crystals were covered by a white diffusion reflector (all sides except top side) 133 100 84 51 80 Only the crystals were covered by a white diffusion reflector (just the bottom side) 136 100 88 54 83 Tekhnologiya i Konstruirovanie v Elektronnoi Apparature, 2019, No 1–2 47ISSN 2225-5818 MATERIALS OF ELECTRONICS 8 As can be seen from Table 1, the light output of the composite sample based on the powder prepared by solid state synthesis with addition of the mineralizer (ZWO-SSS-LiNO3) is twice as high as that of the sample synthesized without the mineralizer (ZWO-SSS). Table 4 shows that the light output of compos- ite samples significantly depends on the light col- lection conditions. The light output of ZWO-SSS- LiNO3 is comparable with the light output of the composite based on a crushed ZnWO4 crystal and is close to a 10×10×2 mm CdWO4 single crystal for all samples placed on a white diffusion reflector. In the case when the single crystals were covered with a white diffusion reflector, the light collection in single crystal samples improved, and the light output of ZWO-30-250mm and ZWO-SSS-LiNO3 is comparable to the ZnWO4 single crystal. Also, in comparison with the single crystal, the com- posite scintillators demonstrate a good uniformity of scintillation parameters through the area of the sample. The results demonstrated in Fig. 10 were measured using the same light collection condi- tions for crystals and composite scintillators (all the sides of the samples except the top ones were covered by white diffusion reflector, see Fig. 9, b). As was shown above, a significant increase in the light output of the composite scintillators made from crushed single crystals may be caused by better light collection conditions, which is obviously characteristic of ZWO-SSS-LiNO3 com- posites as well. Conclusions Research of the scintillation and luminescence characteristics of flexible composite scintillators made of micro- and nano-sized ZnWO4 powders ob- tained by different methods showed the following. The light output of the composite made of the ZnWO4 powder obtained by grinding a ZnWO4 bulk crystal is 84—280% of that of the ZnWO4 single crystal and depends on the light collection conditions. Such a scintillator can be used in vari- ous X-ray and gamma-ray detectors. Composite samples of nano-sized ZnWO4 powders obtained by the hydrothermal-microwave and molten salt methods are inferior to crushed crystal composite in terms of their scintillation characteristics. The solid-state synthesis method using the lith- ium nitrate mineralizer makes it possible to obtain a ZnWO4 micron powder with high scintillation characteristics, bypassing the single crystal growth stage. Under certain conditions of light collection, the parameters of a composite scintillator prepared from such a powder are comparable to those of a single crystal. Such composite scintillator can be an alternative to a composite made of a powder obtained by grinding crystal. Moreover, the manufactured flexible composite scintillators have a high uniformity of light output through the area, which makes them promising for digital radiography. REFERENCES 1. Buchele P., Richter M., Tedde S.А. et al. X-ray imag- ing with scintillator-sensitized hybrid organic photodetectors. Nature Photonic, 2015, no. 9, pp. 846–848. http://dx.doi. org/10.1038/nphoton.2015.216 2. Amouzegar Z., Naghizadeh R., Rezaie H.R. et al. Microwave engineering of ZnWO4 nanostructures: Towards morphologically favorable structures for photocatalytic activ- ity. Ceramics International, 2015, no. 41, pp. 8352–8359. http://doi.org/10.1016/j.ceramint.2015.03.020 3. Hojamberdiev M., Zhub G., Xua Y. Template-free synthesis of ZnWO4 powders via hydrothermal process in a wide pH range. Materials Research Bulletin, 2010, no. 45, pp.1934–1940. http://doi.org/10.1016/j.mater- resbull.2010.08.015 4. Wang Y., Liping L., Li G. Solvothermal synthesis, characterization and photocatalytic performance of Zn-rich ZnWO4 nanocrystals. Applied Surface Science, 2017, no. 393, pp. 159–167. http://doi.org/10.1016/j.apsusc.2016.10.001 5. Klassen N.V., Kurlov V.N., Rossolenko S.N. et al. Scintillation fibers and nanoscintillators for improvement the spatial, spectrometric and time resolution of radiation detec- tors. Bulletin of the Russian Academy of Sciences: Physics, 2009, no. 73, pp. 1451–1456. 6. Reithmaier J.P., Sęk G., Lӧffler A. et al. Strong coupling in a single quantum dot—semiconductor microcav- ity system. Nature, 2004, no. 432, pp. 197–200. http://doi. org/10.1038/nature02969 7. Zhmurin P.N., Malyukin Yu.V. Spectroscopy of the rare-earth ions in the bulk and nanoscale crystals. Kharkiv, Institute for single crystal, 2007, 160 p. 8. Nagornaya L.L., Grinyov B.V., Dubovik A.M. et al. Large volume ZnWO4 crystal scintillators with excellent energy resolution and low background. IEEE Trans. Nucl. Sci., 2009, no. 56, pp. 994–1001. 9. Rodriguez-Carvajal J., Roisnel T. FullProf.98 and WinPLOTR: New Windows95/NT applications for diffrac- tion. Commission for Powder Diffraction, International Union of Crystallography, Newsletter nо. 20, 1998 10. Nagornaya L., Onyshchenko G., Pirogov E. et al. Production of the high-quality CdWO4 single crystals for application in CT and radiometric monitoring. Nuclear Instruments and Methods in Physics Research. Section A, 2005, no. 537, pp.163–165. https://doi.org/10.1016/j. nima.2004.07.258 11. Lisitsyn V.M., Valiev D.T., Tupitsyna I.A. et al. Effect of particle size and morphology on the properties of luminescence in ZnWO4. Journal of Luminescence, 2014, no. 153, pp. 130–136. http://doi.org/10.1016/j.jlu- min.2014.03.024 12. Ryzhikov V.D., Grinyov B.V., Boyarintsev A.Yu. et al. Multi-layered composite detectors for neutron detection. Functional Materials, 2018, no. 1, pp. 172–179. https:// doi.org/10.15407/fm25.01.172 13. Liao H.W., Wang Y.F., Lui X.M. et al. Hydrothermal preparation and characterization of luminescent CdWO4 nano- rods. Chemistry of Materials, 2000, no. 12, pp. 2819–2821. http://doi.org/10.1021/cm000096w 14. Yakubovskaya A.G., Tupitsina I., Sofronov D. et al. Microwave hydrothermal synthesis and luminescent properties Tekhnologiya i Konstruirovanie v Elektronnoi Apparature, 2019, No 1–2 48 ISSN 2225-5818 MATERIALS OF ELECTRONICS 9 of ZnWO4 nanoparticles. Functional Materials, 2013, no. 20, pp. 523–527. http://dx.doi.org/10.15407/fm20.04.523 15. JCDPS PDF-1 File, International Committee for Diffraction Data, PA, USA, 1994. 16. Nagirnyi V., Feldbach E., Jonsson L. et al. Energy trans- fer in ZnWO4 and CdWO4 scintillators. Nuclear Instruments and Methods in Physics Research. Section A, 2002, no. 486, pp. 395–398. http://doi.org/10.1016/S0168-9002(02)00740-4 17. Krutyak N., Mikhailik V., Vasil’ev A. et al. The features of energy transfer to the emission centers in ZnWO4 and ZnWO4:Mo. Journal of Luminescence, 2013, no. 144, pp. 105–111. http://10.1016/j.jlumin.2013.06.039 18. Vistovskyy V., Chornodolskyy Ya., Gloskovskii A. et al. Modeling of X-ray excited luminescence intensity de- pendence on the nanoparticle size. Radiation Measurements, 2016, vol. 90, pp. 174–177. https://doi.org/10.1016/j. radmeas.2015.12.010 19. Wang Y., Ma J., Tao J. et al. Hydrothermal synthe- sis and characterization of CdWO4 nanorods. Journal of the American Ceramic Society, 2006, vol. 89, iss. 9, pp. 2980– 2982. https://doi.org/10.1111/j.1551-2916.2006.01171.x 20. Tupitsyna I.A., Maksimchuk P.O., Yakubovskaya A.G. et al. X-ray and photo-exited luminescence of ZnWO4 nanoparticles with different size and morphology. Functional Materials, 2016, no. 23, pp. 535–539. http://doi. org/10.15407/fm23.04.357 21. Jan B., Lei F. Molten salt synthesis, characterization and luminescence of ZnWO4:Eu3+ nanophosphors. Journal of Alloys and Compounds, 2010, vol. 507, iss. 2, pp. 460–465. http://doi.org/10.1016/j.jallcom.2010.07.203 22. Yakubovskaya A.G., Katrunov K.A., Tupitsina I.A. et al. Nanocrystalline zinc and cadmium tungstates: Morphology, luminescent and scintillation properties. Functional Materials, 2011, no. 18, pp. 446–451. 23. Chen L., Fleming P., Morris V. et al. Size-related lattice parameter changes and surface defects in ceria nano- crystals. The Journal of Physical Chemistry C, 2010, no. 114, pp. 12909–12919. http://doi.org/10.1021/jp1031465 24. Vedda A., Moretti F., Fasoli M. et al. Intrinsic trap- ping and recombination centers in CdWO4 investigated using thermally stimulated luminescence. Physical Review B, 2009, vol. 80, iss. 4, pp. 045104-1-7. https://doi.org/10.1103/ PhysRevB.80.045104 25. Gorshkov V.S., Saveliev V.G., Fedorov N.F. Fizicheskaya Khimiya Silikatov i Drugikh Tugoplavkikh Soedineni [Physical Chemistry of Silicates and Other Refractory Compounds]. Moscow, Vysshaya shkola, 1988, 203 p. (Rus) 26. Budnikov P.P., Gistling A.M. Reaktsii v Smesyakh Tverdykh Veshchestv [Reactions in Mixtures of Solid Substances], Moskow, Stroiizdat, 1971, 311 p. (Rus) Received 21.05 2018 В. С. ТІНЬКОВА, Г. Г. ЯКУБОВСЬКА1, І. А. ТУПІЦИНА1, С. Л. АБАШИН2, Г. Н. ПУЗАН3, С. О. ТРЕТЬЯК1 Україна, м. Харків, 1Інститут сцинтиляційних матеріалів НАН України; 2Національний аерокосмічний університет «Харківський авіаційний інститут»; 3НТК «Інститут монокристалів» НАН України E-mail: zvereva@isma.kharkov.ua ГНУЧКІ КОМПОЗИЦІЙНІ СЦИНТИЛЯТОРИ НА ОСНОВІ МІКРО- ТА НАНОПОРОШКІВ ZnWO4 Для отримання матеріалів, придатних для використання в сучасних сцинтиляційних детекторах (для неруйнівного контролю, цифрової радіографії і рентгенографії, a-, b-, g- та нейтронної реєстрації), ве- дуться пошуки ефективних технологічних методів. Одним з перспективних напрямків досліджень в цій області є створення композиційних сцинтиляторів на основі мікро- і нанорозмірних кристалічних порошків. Властивості таких сцинтиляійних порошків істотно залежать від розміру складових їхніх частинок і морфології, отже, керуючи цими параметрами, можна створити сцинтиляційні детектори з високими сцинтиляційними характеристиками. Вольфрамат цинку (ZnWO4) — це перспективний матеріал, який завдяки унікальній комбінації вла- стивостей може стати успішною заміною CdWO4, що містить токсичний кадмій. У даній роботі проведені дослідження, спрямовані на пошук ефективного способу отримання порошку ZnWO4 для роз- робки гнучких композиційних сцинтиляторів з високими функціональними характеристиками, такими як світловий вихід і рівень післясвітіння. Досліджували порошки вольфрамату цинку (ZnWO4), синтезовані трьома способами: гідротермальним з мікрохвильовим нагрівом, розчин-розплавним методом і методом твердофазового синтезу. Отримані нано- та мікропорошки слугували наповнювачем для створення гнучких композиційних сцинтиляторів. Як сполучне був використаний силіконовий каучук. Морфологію зразків вивчали за допомогою трансмісійної та скануючої електронної мікроскопії. Досліджено люмінесцентні характеристики і сцинтиляційні па- раметри отриманих композитів. Продемонстровано залежність сцинтиляційних параметрів композитів від морфологічних особливостей нано- та мікрокристалітів ZnWO4. Світловий вихід композиту з порошку, виготовленого з подрібненого об'ємного кристалу ZnWO4, ста- новить 84—280% від світлового виходу монокристалла ZnWO4 і залежить від умов збору світла. DOI: 10.15222/TKEA2019.1-2.40 УДК 539.1.074.3 : 62-492.2 : 546.47'78'21 Tekhnologiya i Konstruirovanie v Elektronnoi Apparature, 2019, No 1–2 49ISSN 2225-5818 MATERIALS OF ELECTRONICS 10 Композиційні зразки з нанорозмірних порошків ZnWO4, отриманих гідротермально-мікрохвильовим і розчин-розплавним методами, за своїми сцинтиляційними характеристиками поступаються компози- ту з подрібненого кристала. Твердофазовий метод синтезу з використанням мінералізатора на основі нітрату літію дозволяє отримувати мікронний порошок ZnWO4 з високим значенням світлового виходу, минаючи стадію вирощування монокристалу. Параметри композитів на основі такого порошку близькі до параметрів монокристала вольфрамату кадмію. Ключові слова: вольфрамат цинку, нанорозмірні кристали, мікророзмірні кристали, композиційні сцин- тилятори, світловий вихід, рівень післясвітіння. В. С. ТИНЬКОВА1, А. Г. ЯКУБОВСКАЯ1, И. А. ТУПИЦЫНА1, С. Л. АБАШИН2, А. Н. ПУЗАН3, С. Е. ТРЕТЬЯК1 Украина, г. Харьков, 1Институт сцинтилляционных материалов НАН Украины; 2Национальный аэрокосмический университет «Харьковский авиационный институт»; 3НТК «Институт монокристаллов» НАН Украины E-mail: zvereva@isma.kharkov.ua ГИБКИЕ КОМПОЗИЦИОННЫЕ СЦИНТИЛЛЯТОРЫ НА ОСНОВЕ МИКРО- И НАНОПОРОШКОВ ZnWO4 Для получения материалов, пригодных для использования в современных сцинтилляционных детекторах (для неразрушающего контроля, цифровой радиографии и рентгенографии, a-, b-, g- и нейтронной ре- гистрации), ведутся поиски эффективных технологических методов. Одним из перспективных направ- лений исследований в этой области является создание композиционных сцинтилляторов на основе ми- кро- и наноразмерных кристаллических порошков. Свойства таких сцинтилляционных порошков суще- ственно зависят от размера составляющих их частиц и морфологии, а значит, управляя этими параме- трами, можно создать сцинтилляционные детекторы с высокими функциональными характеристиками. Вольфрамат цинка (ZnWO4) — это перспективный материал, который благодаря уникальной комбина- ции свойств может быть успешной заменой CdWO4, содержащего токсичный кадмий. В настоящей ра- боте проведены исследования, направленные на поиск эффективного способа получения порошка ZnWO4 для разработки гибких композиционных сцинтилляторов с высокими функциональными характеристи- ками, такими как световой выход и уровень послесвечения. Исследовали порошки вольфрамата цинка (ZnWO4), синтезированные тремя способами: гидротермальным с микроволновым нагревом, раствор-расплавным методом и методом твердофазного синтеза. Полученные нано- и микропорошки служили наполнителем для создания гибких композиционных сцинтилляторов. В ка- честве связующего был использован силиконовый каучук. Морфологию образцов изучали с помощью транс- миссионной и сканирующей электронной микроскопии. Исследованы люминесцентные характеристики и сцинтилляционные параметры полученных композитов. Продемонстрирована зависимость сцинтилляци- онных параметров композитов от морфологических особенностей нано- и микрокристаллитов ZnWO4. Световой выход композита из порошка, приготовленного из измельченого объемного кристалла ZnWO4, составляет 84—280% от светового выхода монокристалла ZnWO4 и зависит от условий светособи- рания. Композиционные образцы из наноразмерных порошков ZnWO4, полученных гидротермально- микроволновым и раствор-расплавным методами, по своим сцинтилляционным характеристикам усту- пают композиту из измельченного кристалла. Твердофазный метод синтеза с использованием минерали- затора на основе нитрата лития позволяет получить микронный порошок ZnWO4 с высоким значением светового выхода, минуя стадию выращивания монокристалла. Композиты на основе такого порошка об- ладают параметрами, близкими к параметрам монокристалла вольфрамата кадмия. Ключевые слова: вольфрамат цинка, наноразмерные кристаллы, микроразмерные кристаллы, композици- онные сцинтилляторы, световой выход, уровень послесвечения. Описание статьи для цитирования: Tinkova V. S., Yakubovskaya A. G., Tupitsyna I. A., Abashin S. L., Puzan A. N., Tretyak S. O. Flexible composite scintillators based on ZnWO4 micro- and nanopowders. Техно логия и конструи- рование в электронной аппаратуре, 2019, № 1-2, с. 40–49. http://dx.doi.org/10.15222/TKEA2019.1.40 Cite the article as: Tinkova V. S., Yakubovskaya A. G., Tupitsyna I. A., Abashin S. L., Puzan A. N., Tretyak S. O. Flexible composite scintillators based on ZnWO4 micro- and nanopowders. Tekhnologiya i Konstruirovanie v Elektronnoi Apparature, 2019, no. 1-2, pp. 40–49. http://dx.doi.org/10.15222/TKEA2019.1.40