Deformation-induced effects in indium antimonide microstructures at cryogenic temperatures for sensor applications

The authors investigate deformation-induced changes in the electrophysical parameters of the indium antimonide microcrystals at cryogenic temperatures in strong magnetic fields up to 10 T. Исследованы деформационно-стимулированные изменения электрофизических параметров микрокристаллов антимонида инд...

Full description

Saved in:
Bibliographic Details
Published in:Технология и конструирование в электронной аппаратуре
Date:2019
Main Authors: Druzhinin, A.O., Khoverko, Yu.M., Ostrovskii, I.P., Liakh-Kaguy, N.S., Pasynkova, O.A.
Format: Article
Language:English
Published: Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України 2019
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/167872
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Deformation-induced effects in indium antimonide microstructures at cryogenic temperatures for sensor applications / A.O. Druzhinin, Yu.M. Khoverko, I.P. Ostrovskii, N.S. Liakh-Kaguy, O.A. Pasynkova // Технология и конструирование в электронной аппаратуре. — 2019. — № 3-4. — С. 3-9. — Бібліогр.: 31 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-167872
record_format dspace
spelling Druzhinin, A.O.
Khoverko, Yu.M.
Ostrovskii, I.P.
Liakh-Kaguy, N.S.
Pasynkova, O.A.
2020-04-12T15:42:02Z
2020-04-12T15:42:02Z
2019
Deformation-induced effects in indium antimonide microstructures at cryogenic temperatures for sensor applications / A.O. Druzhinin, Yu.M. Khoverko, I.P. Ostrovskii, N.S. Liakh-Kaguy, O.A. Pasynkova // Технология и конструирование в электронной аппаратуре. — 2019. — № 3-4. — С. 3-9. — Бібліогр.: 31 назв. — англ.
2225-5818
DOI: 10.15222/TKEA2019.3-4.03
https://nasplib.isofts.kiev.ua/handle/123456789/167872
625.315.592
The authors investigate deformation-induced changes in the electrophysical parameters of the indium antimonide microcrystals at cryogenic temperatures in strong magnetic fields up to 10 T.
Исследованы деформационно-стимулированные изменения электрофизических параметров микрокристаллов антимонида индия при криогенных температурах в сильных магнитных полях (до 10 Тл).
У роботі досліджено деформаційно-стимульоване змінення електрофізичних параметрів ниткоподібних кристалів антимоніду індію за кріогенних температур у сильних магнітних полях (до 10 Тл).
en
Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України
Технология и конструирование в электронной аппаратуре
Новые компоненты для электронной аппаратуры
Deformation-induced effects in indium antimonide microstructures at cryogenic temperatures for sensor applications
Деформационно-стимулированые эффекты в микроструктурах антимонида индия при криогенных температурах для сенсорных применений
Деформаційно-стимульовані ефекти в мікроструктурах антимоніду індію за кріогених температур для сенсорних застосувань
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Deformation-induced effects in indium antimonide microstructures at cryogenic temperatures for sensor applications
spellingShingle Deformation-induced effects in indium antimonide microstructures at cryogenic temperatures for sensor applications
Druzhinin, A.O.
Khoverko, Yu.M.
Ostrovskii, I.P.
Liakh-Kaguy, N.S.
Pasynkova, O.A.
Новые компоненты для электронной аппаратуры
title_short Deformation-induced effects in indium antimonide microstructures at cryogenic temperatures for sensor applications
title_full Deformation-induced effects in indium antimonide microstructures at cryogenic temperatures for sensor applications
title_fullStr Deformation-induced effects in indium antimonide microstructures at cryogenic temperatures for sensor applications
title_full_unstemmed Deformation-induced effects in indium antimonide microstructures at cryogenic temperatures for sensor applications
title_sort deformation-induced effects in indium antimonide microstructures at cryogenic temperatures for sensor applications
author Druzhinin, A.O.
Khoverko, Yu.M.
Ostrovskii, I.P.
Liakh-Kaguy, N.S.
Pasynkova, O.A.
author_facet Druzhinin, A.O.
Khoverko, Yu.M.
Ostrovskii, I.P.
Liakh-Kaguy, N.S.
Pasynkova, O.A.
topic Новые компоненты для электронной аппаратуры
topic_facet Новые компоненты для электронной аппаратуры
publishDate 2019
language English
container_title Технология и конструирование в электронной аппаратуре
publisher Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України
format Article
title_alt Деформационно-стимулированые эффекты в микроструктурах антимонида индия при криогенных температурах для сенсорных применений
Деформаційно-стимульовані ефекти в мікроструктурах антимоніду індію за кріогених температур для сенсорних застосувань
description The authors investigate deformation-induced changes in the electrophysical parameters of the indium antimonide microcrystals at cryogenic temperatures in strong magnetic fields up to 10 T. Исследованы деформационно-стимулированные изменения электрофизических параметров микрокристаллов антимонида индия при криогенных температурах в сильных магнитных полях (до 10 Тл). У роботі досліджено деформаційно-стимульоване змінення електрофізичних параметрів ниткоподібних кристалів антимоніду індію за кріогенних температур у сильних магнітних полях (до 10 Тл).
issn 2225-5818
url https://nasplib.isofts.kiev.ua/handle/123456789/167872
citation_txt Deformation-induced effects in indium antimonide microstructures at cryogenic temperatures for sensor applications / A.O. Druzhinin, Yu.M. Khoverko, I.P. Ostrovskii, N.S. Liakh-Kaguy, O.A. Pasynkova // Технология и конструирование в электронной аппаратуре. — 2019. — № 3-4. — С. 3-9. — Бібліогр.: 31 назв. — англ.
work_keys_str_mv AT druzhininao deformationinducedeffectsinindiumantimonidemicrostructuresatcryogenictemperaturesforsensorapplications
AT khoverkoyum deformationinducedeffectsinindiumantimonidemicrostructuresatcryogenictemperaturesforsensorapplications
AT ostrovskiiip deformationinducedeffectsinindiumantimonidemicrostructuresatcryogenictemperaturesforsensorapplications
AT liakhkaguyns deformationinducedeffectsinindiumantimonidemicrostructuresatcryogenictemperaturesforsensorapplications
AT pasynkovaoa deformationinducedeffectsinindiumantimonidemicrostructuresatcryogenictemperaturesforsensorapplications
AT druzhininao deformacionnostimulirovanyeéffektyvmikrostrukturahantimonidaindiâprikriogennyhtemperaturahdlâsensornyhprimenenii
AT khoverkoyum deformacionnostimulirovanyeéffektyvmikrostrukturahantimonidaindiâprikriogennyhtemperaturahdlâsensornyhprimenenii
AT ostrovskiiip deformacionnostimulirovanyeéffektyvmikrostrukturahantimonidaindiâprikriogennyhtemperaturahdlâsensornyhprimenenii
AT liakhkaguyns deformacionnostimulirovanyeéffektyvmikrostrukturahantimonidaindiâprikriogennyhtemperaturahdlâsensornyhprimenenii
AT pasynkovaoa deformacionnostimulirovanyeéffektyvmikrostrukturahantimonidaindiâprikriogennyhtemperaturahdlâsensornyhprimenenii
AT druzhininao deformacíinostimulʹovaníefektivmíkrostrukturahantimoníduíndíûzakríogenihtemperaturdlâsensornihzastosuvanʹ
AT khoverkoyum deformacíinostimulʹovaníefektivmíkrostrukturahantimoníduíndíûzakríogenihtemperaturdlâsensornihzastosuvanʹ
AT ostrovskiiip deformacíinostimulʹovaníefektivmíkrostrukturahantimoníduíndíûzakríogenihtemperaturdlâsensornihzastosuvanʹ
AT liakhkaguyns deformacíinostimulʹovaníefektivmíkrostrukturahantimoníduíndíûzakríogenihtemperaturdlâsensornihzastosuvanʹ
AT pasynkovaoa deformacíinostimulʹovaníefektivmíkrostrukturahantimoníduíndíûzakríogenihtemperaturdlâsensornihzastosuvanʹ
first_indexed 2025-11-25T14:43:14Z
last_indexed 2025-11-25T14:43:14Z
_version_ 1850517784267587584
fulltext Tekhnologiya i Konstruirovanie v Elektronnoi Apparature, 2019, No 3–4 3ISSN 2225-5818 SENSORS 1 UDC 625.315.592 A. O. DRUZHІNIN 1, 2, Yu. M. KHOVERKO 1, 2, I. P. OSTROVSKII1, N. S. LIAKH-KAGUY1, O. A. PASYNKOVA1 Ukraine, 1Lviv Polytechnic National University; Poland, Wroclaw, 2Institute of Low Temperature and Structure Research PAS E-mail: druzh@polynet.lviv.ua DEFORMATION-INDUCED EFFECTS IN INDIUM ANTIMONIDE MICROSTRUCTURES AT CRYOGENIC TEMPERATURES FOR SENSOR APPLICATIONS Despite the rapid progress and significant ad- vances in microelectronics, there remain a lot of problems that require further detailed study of the physical properties and possible applications of whisker crystals. Modern cryogenic electron- ics requires highly sensitive, high-speed devices and components of integrated circuits, capable of operating at various temperature intervals, includ- ing the cryogenic temperature range. Principles of cryoelectronics are used to build a number of devices (cryotrons, quantum and parametric ampli- fiers, resonators, filters, sensors, delay lines, etc.) based on silicon technologies [1]. On the other hand, apart from using traditional silicon whisker crystals in modern microelectronics, scientists carry on intensive studies of other materials and structures. For instance, there is an ongoing work on creating solid state electronics based on silicon- on-insulator structures [2]. Using polycrystalline silicon in manufacturing of microelectronic devices makes it possible to create multilayer structures. One of the advantages of such structures is that the resistivity of the created layers varies within a very wide range (several orders of magnitude). However, the need for deep cooling and related technological difficulties considerably restrict the use of such materials. Moreover, one of the most important areas of modern magnetoelectronics is the study of the magnetoresistive effect (MR), and in recent years the emphasis has been placed on the phenomenon of giant magnetoresistance (GMR). In the developed devices [1], in which there are new effects due to the interaction of «magnetic electrons» with artificially created nanosized struc- tures, a combination of magnetism and electronics The authors investigate deformation-induced changes in the electrophysical parameters of the indium antimonide microcrystals at cryogenic temperatures in strong magnetic fields up to 10 T. It is determined that for strongly doped InSb microcrystals, the gauge factor at liquid-helium temperature is GF4.2K ≈ 72 for the charge carrier concentration of 2∙1017 сm–3, while being GF4.2K ≈ 47 for the concentration of 6∙1017 сm–3, at ε = –3∙10–4 rel. un. For the development of magnetic field sensors based on the magnetoresistive principle, the effect of a giant magnetic resistivity reaching 720% at a temperature of 4.2 K is used. Êëþ÷åâûå сëîâà: InSb whiskers, gauge factor, magnetoresistance, sensor. is used, so they claim the birth of a new area of magnetism and technology — magnetoelectronics. In this case, InSb whisker crystals, due to their morphology, high values of charge carrier mobil- ity, structural perfection and high mechanical strength, are a good model for studying the influ- ence of external factors, in particular magnetic field, for the concentrations corresponding to the metal-semiconductor transition [3]. It is known that film materials using the magnetoresistive effect, are sensitive to the elec- tric current. Therefore, by changing the value of the current one can change the amplitude of the magnetoresistance. Thus, the authors of [4] established the dependence of the magnetoresis- tance of multi-layer materials based on Co, Ni or Pt on the measuring current value. The obtained results are explained [5] by the different effect of the torque moment transfer by spin-polarized charge carriers at different values of current. This effect was anticipated by the authors of [6, 7] and experimentally studied in [8—10]. On the other hand, the authors of [11, 12] studied the manifestation of the magnetoresistive effect in semiconductor-dispersed magnets. Here, however, the magnetoresistance did not reach high values (as opposed to InSb), which directly affects the sensitivity of the devices developed on their basis. Previous studies conducted for InSb microcrys- tals at cryogenic temperatures in strong magnetic fields up to 14 T allowed detecting a number of effects and to assess a number of electrophysical parameters such as Shubnikov — de Haas (SdH) oscillations (and their period) [13] and Dingle DOI: 10.15222/TKEA2019.3-4.03 Tekhnologiya i Konstruirovanie v Elektronnoi Apparature, 2019, No 3–4 4 ISSN 2225-5818 SENSORS 2 temperature [3], to detect GMR and negative magnetoresistance, associated with significant spin-orbital exchange interaction. Moreover, the influence of external factors, such as deformation, allowed to determine the occurrence of the Berry phase [14] in the longi- tudinal magnetoresistance, which was previously observed by the authors of [15—17] in bismuth. It is obvious that the deformation leads to a change in the scattering mechanisms, and may also af- fect electrophysical parameters in the transverse magnetoresistance, in particular the GMR value. The authors of this work aimed at studying the deformation-induced changes in the electro- physical parameters of the indium antimonide microcrystals at the cryogenic temperatures in strong magnetic fields up to 10 T, particularly in the transverse magnetoresistance, in order to investigate the possibilities of using such crystals in the magnetoresistive sensors of deformation and magnetic field, which could be used under difficult operating conditions. Experiment details In order for the InSb whisker crystals to grow, i.e., for the material to be transferred to the crys- tallization zone, it was necessary to create a con- centration gradient. This was achieved by creating a temperature gradient between the dissolution zone and the crystallization zone. The whisker crystallization temperature was 720 K, while the evaporation zone temperature was 850 K. While growing, the crystals were doped with tin admixture, and the concentration of charge carriers, determined by using Hall effect, was from 6∙1016 to 6∙1017 сm–3. The chosen InSb whiskers were 2—3 mm in length and had lateral dimensions of about 30—40 µm. Gold microwires (10 microns in diameter) were pulse-welded to the InSb micro-crystal to create eutectic contacts. InSb whisker conductivity was studied in the temperature range from 4.2 to 300 K. For these studies, crystals were cooled down to the tempera- ture of 4.2 K in a helium cryostat. The temperature was measured by using a Cu–CuFe thermocouple, calibrated with a CERNOX sensor. The magnetic field effects of the whiskers were studied using a Bitter magnet with the induction of up to 14 T and the time scanning of field of 1.75 T/min in the temperature range of 4.2—77 K. Stabilized electric current along the whisker was created by the current source Keithley 224 in the range of 1—10 mA, depending on the resistance of the crystal. CERNOX sensor was used to measure magnetic parameters. Being weakly sensitive to magnetic field induction B, the device has a varia- tion of the output signal of about 1% at B = 15 T. In order to evaluate the possibility of using InSb microcrystals in mechanical sensors, the au- thors used a technique of deforming the samples by producing a difference between the linear ex- pansion coefficients of the crystal itself and the substrate on which it was fixed [18]. The uniaxial deformation of microcrystals was carried out by affixing the crystals on the substrates with HL-931 glue with a polymerization temperature of 180°С. According to this method, when the crystal is fixed on the substrate, the thermal stress in the former can be estimated by the ratio               0 1 , 1 1 T s c t s cc T s s c c T T T dt T Tt E T t E T t            (1) were αc and αs are temperature coefficients of linear expansion of the crystal and sub- strate, respectively; Ec, Es and νc, νs are Young’s moduli and Poisson co- efficients of crystal and substrate materials, respectively; tc and ts are the thickness of the crystal and the substrate. Parameter T0 in this formula corresponds to the technological temperature at which a rigid connection is formed between the crystal and the substrate, e.g., this may be the temperature of adhesive polymerization. To calculate the thermal deformation of the whiskers, the authors used the temperature depen- dences of the thermal expansion coefficients and of Young's moduli for InSb and Cu from [19—21]. Assuming that the elastic coefficients depend on temperature slightly in the temperature range of 4.2—50 K, we can bring the formula (1) to the following form:       0 , T t s c T T T T dt        (2) were γ is the coefficient that characterizes the ef- ficiency of the transmission of deformation from the substrate to the crystal, its value depending on the geometry of the samples and the methods of their fixation. In our case, the value of γ is calculated according to [18] and is equal to 0.7. Experimental results The use of semiconductor sensors based on the piezoresistive effect remains the most common means for converting mechanical quantities into an electrical signal due to the high sensitivity and reliability of the design [18]. Therefore, the focus of the experimental studies of InSb semiconductor crystals at temperatures of 4.2—300 K in strong magnetic fields (up to 14 T) Tekhnologiya i Konstruirovanie v Elektronnoi Apparature, 2019, No 3–4 5ISSN 2225-5818 SENSORS 3 Fig. 1. Temperature dependence of the resistance of deformed InSb samples with different concentration of charge carriers in the vicinity of the metal dielectric transition (in сm–3): 1 — 6∙1016; 2 — 2∙1017; 3 — 6∙1017 R, Ω 11,75 11,50 3,0 2,0 0 50 100 150 200 250 T, K 1 2 3 Fig. 2. Temperature dependence of the gauge factor for InSb microcrystals with different concentration of charge carriers (in сm–3): a) 1 — 2∙1017; 2 — 6∙1017; b) 6∙1016 GF 600 400 200 0 0 50 100 150 200 250 T, K 1 2 a) b) GF 200 0 –200 –400 150 50 100 200 T, K was on determining exactly how the deformation af- fected the samples. Thus, Fig. 1 shows the temperature dependence of the resistance of microcrystals fixed on copper substrates with an average deformation level ε = –3∙10–4 rel. un. in the temperature range from 4.2 to 300 K. Preliminary studies [3, 13] for free (not fixed) InSb whiskers allowed estimating the gauge factor (GF) at low temperatures, which can be deter- mined by the ratio 0 0 , R R GF R    (3) were R0 is the resistance of the undeformed (free) crystal; R is the resistance of the deformed crystal; ε is the uniaxial strain acting on the crystal. Fig. 2 presents the temperature dependences of the gauge factor for these crystals calculated from the experimental data. Throughout the en- tire studied temperature range, strongly doped crystals (Fig. 1) demonstrate the temperature dependence of resistance that is typical for metal. Piezoresistance manifests itself typically in these crystals [22]: when subjected to compression de- formation, the resistance of the crystals decreases. At the temperature of liquid helium, GF4.2K ≈ 72 for InSb microcrystals with a concentration of 2∙1017 сm–3 and GF4.2K ≈ 47 for the crystals with a concentration of 6∙1016 сm–3, at ε = –3∙10–4 rel. un. However, for InSb microcrystals with a concentration of 6∙1016 сm–3, gauge factor exhibits non-typical properties: above the temperature of the liquid nitrogen, it changes its sign from positive to negative. The absolute value of the gauge factor both at the temperature of liquid helium and in the area of room temperatures reaches GF ≈ 350, which can be explained by the fact that the charge carrier concentration approaches the values of the dielectric state of the metal—dielectric phase tran- sition. Apparently, this is caused by the fact that the ensemble of charge carriers at low tempera- tures becomes reduced, because the carriers are being freezed out, and their transport is believed to be caused by strong spin-orbit interaction in the range of jump conductivity by twice localized impurities [3, 13, 23]. Investigation of the behavior of the magnetic resistivity at low temperatures can also help understand the processes occurring in crystals at low temperatures. Thus, the authors of [3] noticed that magnetoresistance changes its sign from positive to negative in the longitudinal di- rection, which indicates a characteristic feature of the studied samples. Another such feature was described in [24]: magnetoresistance deviated from the quadratic dependence in the range of relatively weak magnetic fields. The authors of [24] explained the emergence of a negative magnetic resistivity by the formation of «pairs», i.e., two states with paired spins, that are relatively close to each other and distant from others, which exist near the Fermi level. In addition, the authors of both [3] and [25] received high values of Lande g-factor (g ≈ 60) at a temperature of 4.2 K, indicating a strong spin-orbit interaction. Tekhnologiya i Konstruirovanie v Elektronnoi Apparature, 2019, No 3–4 6 ISSN 2225-5818 SENSORS 4 In its turn, the deformation leads to the redistri- bution of energy zones and to the manifestation of the negative magnetic resistivity effect, associated with a change in the density of states near the Fermi level in the magnetic field. If the «pair» is ionized once, its level is shifted upward when the magnetic field increases. Some of the levels shift downward, and others shift upwards, which leads not only to the displacement of the Fermi level, but also to the change in the density of states in its vicinity. The authors of [13, 17] demonstrated that if the chemical potential is equal to or lies slightly below the second subband, then the increase of the magnetic field B and the movement of the charge carriers in the boundary zones cause the chemical potential to shift, and due to this fact, the resis- tance first drops sharply and then monotonously grows. This is connected to the competing influ- ence of the magnetic field on the magnitude of the multiplier and the index in the expression of the carrier dispersion probability at the Fermi level. Fig. 3, a shows the experimental results on the transverse magnetoresistance for deformed crystals with a charge carrier concentration of 6∙1016 сm–3 (which corresponds to the dielectric state of the metal—dielectric phase transition). The figure demonstrates that the deformation causes changes in the conduction mechanisms inside the crystals, which is reflected in the anomalous behavior of the gauge factor. Thus, at low temperatures, Shubnikov de Haas oscillations begin to manifest themselves in InSb crystals for the transverse mag- netoresistance, same as they do for the longitudinal magnetoresistance. For the deformed InSb microstructures with a charge carrier concentration of 6∙1017 сm–3 (which corresponds to the metal state of the metal—di- electric phase transition), the magnetoresistance significantly increases, reaching 250% (Fig. 3, b). The probable reason for the growth of the mag- netoresistance in such crystals is, obviously, the release of «freezed-out» excess charge carriers due to an increase in their mean concentration in the crystal, and, consequently, an increase in average mobility. This leads to the linearization of the characteristics and a decrease of the temperature coefficient of re- sistance of crystals in the 4.2—70 K range. On the other hand, in the deformed InSb mi- crocrystals with the charge carrier concentration of 2∙1017 сm–3 (which corresponds to the metal- dielectric phase transition), a giant magnetic resis- tance was also observed, as well as its significant increase in value (Fig. 3, c), reaching 720%. In this case, however, the values of the temperature magnetoresistivity coefficient were lower for the temperature range of 4.2—70 K, which increases the sensitivity to the magnetic field. Fig. 3. Transversal magnetoresistance of InSb whiskers with different tin concentration (in сm–3) for strained samples at temperature range 4.2—70 K: à — 6∙1016; b — 6∙1017; c — 2∙1017 a) 160 120 80 40 0 1 2 3 4 5 6 7 8 9 B, T 4.2 K ΔR / R 0, % 70 K 250 200 150 100 50 0 4.2 K b) 70 K ΔR / R 0, % 1 2 3 4 5 6 7 8 9 B, T 600 400 200 0 0 1 2 3 4 5 6 7 8 9 B, T 4.2 K c) 70 K ΔR / R 0, % Application The present stage of the development of new branches of science and technology (space and aviation technology, cryogenic technology, cryoen- ergy, etc.) highlights the problem of creating miniature highly sensitive mechanical, thermal, and magnetic sensors with a special capacity to operate at low temperatures [26—31]. The studies on the influence of deformation and magnetic field on indium antimonide microcrystals with a charge carrier concentration from 6∙1016 to 6∙1017 сm–3 allowed identifying a number of effects that make such materials suitable for use as basis for the piezoresistive sensors and magnetic field magnetoresistive sensors. A photo of a standard physical quantity sensor, developed during this study, is shown in Fig. 4. Tekhnologiya i Konstruirovanie v Elektronnoi Apparature, 2019, No 3–4 7ISSN 2225-5818 SENSORS 5 The temperature coefficient of resistance (TCR) for such microcrystals was found to be TCR ≈ 0.004 Ω/K (Fig. 1, curves 2, 3) at room temperature (Fig. 2, a). Such samples can be used to create mechanical sensors for two tem- perature ranges: from 4.2 to 50 K and from 50 to 300 K, since there is a significant increase in GF300K ≈ 720 at room temperature (Fig. 2, a). For InSb crystals with a charge carrier con- centration corresponding to the dielectric state of the metal—dielectric phase transition, the gauge factor is GF4.2K ≈ 350 and GF300K ≈ –350. The temperature coefficient of resistance of such samples is slightly lower (TCR ≈ 0.001 Ω/K). The temperature-related change in the gauge factor is linear (Fig. 2, b). Such samples can be used to create piezoresistive sensors for a wide range of temperatures. The research on the magnetoresistance of de- formed InSb microcrystals with a charge carrier concentration from 6∙1016 to 6∙1017 сm–3 (covering the metal—dielectric phase transition) at cryogenic temperatures showed the following. The samples with a charge carrier concentration of 6∙1016 cm–3 showed an instability of the temperature coef- ficient of the magnetoresistance in the range of 4.2—70 K, caused by oscillation phenomena oc- curing in the transverse magnetoresistance in mag- netic fields up to 10 T. Such phenomena make it impossible to use deformed InSb microcrystals in magnetic field sensors at cryogenic temperatures. The deformed InSb crystals with a concentration of charge carriers of 6∙1017 сm–3 demonstrated a significant increase in the magnetic resistance (up to 250%) at a sensitivity of 600 mV/T. The temperature resistance (magnetic resistivity) for the temperature range of 4.2—70 K in the fields up to 10 T was TCR ≈ 0.57 Ω/K (Fig. 3, b). As for the deformed InSb crystals with the charge carrier concentration of 6∙1017 сm–3 (which corre- sponds to the metal—dielectric transition), there was detected the giant magnetoresistance (which increased up to 720%). The sensitivity to the magnetic field here was 1500 mV/T. The tempera- ture coefficient of resistance for the temperature range of 4.2—70 K in the fields up to 10 T was TCR ≈ 0.46 Ω/K (Fig. 3, c). Fig. 4. Typical view of sensors of physical quantities Conclusions The studies on the influence of deformation on the electrophysical parameters of indium antimonide microcrystals at cryogenic temperatures in strong magnetic fields (up to 10 T) allowed discovering a number of effects that make such materials suitable for use as basis for the magnetoresistive sensors of deformation and magnetic field, that could function under complex operating conditions. It has been determined that the best option for piezoresistive sensors that could function in a wide temperature range (4.2—300 K) are the InSb mi- crocrystals with carrier concentration of 6∙1016 сm–3 (which corresponds to the dielectric state of the metal-dielectric transition). Magnetic field sensors based on magnetore- sistive principle were developed using the giant magnetic resistivity effect reaching 720% at a tem- perature of 4.2 K. Such sensors contain deformed InSb microcrystals with a carrier concentration corresponding to the metal-dielectric transition (2∙1017 сm–3). The developed microelectronic sen- sor has ultra-high sensitivity to a magnetic field of 1500 mV/T, and the simplicity of its design provides low inertia and high performance at the same time. REFERENCES 1. Zutic I., Fabian Ja., Das Sarma S. Spintronics: Fundamentals and applications. Rev. Mod. Phys., 2004, vol. 76, iss. 2, 323. https://doi.org/10.1103/RevModPhys.76.323 2. Holota V.I., Kogut I., Druzhinin A., Khoverko Y. High sensitive active MOS photodetector on the local 3D SOI-structure. Advanced Materials Research, 2014, vol. 854, pp. 45–47. https://doi.org/10.4028/www.scientific.net/ AMR.854.45 3. Druzhinin A., Ostrovskii I., Khoverko Yu., Liakh- Kaguy N. Negative magnetoresistance in indium antimonide whiskers doped with tin. Low Temperature Physics, 2016, vol. 42, pp. 453–457. https://doi.org/10.1063/1.4954778 4. Nepijko S.A., Kutnyakhov D., Odnodvorets L.V., Protsenko S.I. Sensor and microelectronic elements based on nanoscale granular systems. J. Nanopart. Res., 2011, vol. 13, iss. 12, p. 6263–6281. https://doi.org/10.1007/s11051-011-0560-3 5. Mangin S., Ravelosona D., Katine J.A. et al. Current- induced magnetization reversal in nanopillars with perpen- dicular anisotropy. Nat. Mater., 2006, no. 5, pp. 210–215. https://doi.org/10.1038/nmat1595 6. Berger L. Emission of spin waves by a magnetic mul- tilayer traversed by a current. Phys. Rev. B, 1996, vol. 54, iss. 13, 9353. https://doi.org/10.1103/PhysRevB.54.9353 7. Slonczewski J.C. Current-driven excitation of mag- netic multilayers. J. Magn. Magn. Mater., 1996, vol. 159, iss. 1–2, L1–L7. https://doi.org/10.1016/0304-8853(96)00062-5 8. Waintal X., Myers E.B., Brouwer P.W., Ralph D.C. Role of spin-dependent interface scattering in generating current-induced torques in magnetic multilayers. Phys. Rev. B, 2000, vol. 62, iss. 18, 12317. https://doi.org/10.1103/ PhysRevB.62.12317 9. Stiles M.D., Zangwill A. Anatomy of spin-transfer torque. Phys. Rev. B, 2002, vol. 66, iss. 1, 014407. https:// doi.org/10.1103/PhysRevB.66.014407 10. Volkov S.О., Tkach О.P., Odnodvorets L.V., Huzhnya Ya.V. Magnetoresistive properties of nanosized film materials: variation of measuring currents and minimization of electronic noise. Journal Nano- And Electronic Physics, Tekhnologiya i Konstruirovanie v Elektronnoi Apparature, 2019, No 3–4 8 ISSN 2225-5818 SENSORS 6 2016, vol. 8, iss. 3, 0303. http://dx.doi.org/10.21272/ jnep.8(3).03030 11. Druzhinin A., Ostrovskii I., Khoverko Yu., Yatsukhnenko S. Magnetic properties of doped Si<B,Ni> whiskers for spintronics. Journal of Nano Research, 2016, vol. 39, pp. 43–54. https://doi.org/10.4028/www.scientific. net/JNanoR.39.43 12. Yatsukhnenko S., Druzhinin A., Ostrovskii I. et al. Nanoscale conductive channels in silicon whiskers with nickel impurity. Nanoscale Research Letters, 2017, vol. 12, iss. 78, pp. 1–7. https://doi.org/10.1186/s11671-017-1855-9 13. Druzhinin A., Ostrovskii I., Khoverko Y. et al. Peculiarities of magnetoresistance in InSb whiskers at cryo- genic temperatures. Materials Research Bulletin, 2015, vol. 72, pp. 324–330. https://doi.org/10.1016/j.materres- bull.2015.08.016 14. Druzhinin A., Ostrovskii I., Khoverko Yu. et al. Berry phase in strained InSb whiskers. Low Temperature Physics, 2018, vol. 44, pp. 1189–1194. https://doi. org/10.1063/1.5060974 15. Murakawa H., Bahramy M. S., Tokunaga M. et al. Detection of Berry’s phase in a bulk Rashba semiconductor. Science, 2013, vol. 342, iss. 6165, pp. 1490–1493. https:// doi.org/10.1126/science.1242247 16. Veldhorst M., Snelder M., Hoek M. et al. Magnetotransport and induced superconductivity in Bi based three-dimensional topological insulators. Phys. Status Solidi, 2013, vol. 7, iss. 1–2, pp. 26–38. https://doi.org/10.1002/ pssr.201206408 17. Nikolaeva A., Konopko L., Huberc T. E. et al. Effect of weak and high magnetic fields in longitudinal and transverse configurations on maneto-thermoelectric properties of quantum Bi wires. Surface Engineering and Applied Electrochemistry, 2014, vol. 50, iss. 1, pp. 57–62. http://dx.doi.org/10.3103/ S1068375514010128 18. Druzhinin A.A., Lavitska E.N., Maryamova I.I., Kunert H.W. Stress imposing during microcrystals charac- terization at cryogenic temperatures. Advanced Engineering Materials, 2002, vol. 4, iss. 8, pp. 589–592. https:// doi.org/10.1002/1527-2648(20020806)4:8%3C589::AID- ADEM589%3E3.0.CO;2-F 19. Xiaoling Zhang, Qingduan Meng, Liwen Zhang. Dependence of the deformation of 128×128 InSb focal- plane arrays on the silicon readout integrated circuit thickness. The Open Electrical & Electronic Engineering Journal, 2015, vol. 9, pp. 170–174. http://dx.doi. org/10.2174/1874129001509010170 20. Liwen Zhang, Jiexin Pu1, Ming Shao, Na Li. Numerical simulation and analysis of thermal stress in 8×8 InSb detector integrated microlens arrays with underfill. Journal of Convergence Information Technology, 2012, vol. 7, iss. 8. 21. Botcharova E., Freudenberger J., Schultz L. Mechanical and electrical properties of mechanically alloyed nanocrystalline Cu–Nb alloys. Acta Materialia, 2006, vol. 54, iss. 12, pp. 3333–3341. https://doi.org/10.1016/j.acta- mat.2006.03.021 22. Smith C.S. Piezoresistance effect in germanium and silicon. Phys. Rev., 1954, vol. 94, iss. 1, pp. 42–49. https:// doi.org/10.1103/PhysRev.94.42 23. Druzhinin A., Ostrovskii I., Khoverko Yu. et al. Variable-range hopping conductance in Si whiskers. Phys. Status Solidi A, 2014, vol. 211, iss. 2, pp. 504–508. https:// doi.org/10.1002/pssa.201300162 24. Vanger А.I., Zabrodskii А.G., Tisnek Т.V. Magnetoresistance of compensated Ge:As at ultrahigh fre- quencies in the metal-insulator phase transition region. FTP, 2000, vol. 34, iss. 7, pp. 774–782. (Rus). https://journals. ioffe.ru/articles/37181 25. Litvinenko K.L., Nikzad L., Pidgeon C.R. et al. Temperature dependence of the electron Landé g factor in InSb and GaAs. Phys. Rev. B, 2008, vol. 77, iss. 3, 033204. https://doi.org/10.1103/PhysRevB.77.033204 26. Barlian A.A., Park S.J., Mukundan V., Pruitt B.L. Design and characterization of microfabricated piezoresistive floating element-based shear stress sensors. Sens. Actuators A, 2007, vol. 134, iss. 1, pp. 77–87. https://doi.org/10.1016/j. sna.2006.04.035 27. Naumova O.V., Popov V.P., Aseev A.I. et al. Silicon- on-insulator nanowire transistor for medical biosensors. In EuroSOI International conference, 2009, Goteborg, pp. 69–70. https://doi.org/10.1007/978-3-642-15868-1 28. Günel H. Y., Batov I. E., Hardtdegen H. et al. Supercurrent in Nb/InAs-nanowire/Nb Josephson junctions. J. Appl. Phys., 2012, vol. 112, iss. 3, 034316. https://doi. org/10.1063/1.4745024 29. Claeys C., Simon E. Perspectives of silicon-on- insulator technologies for cryogenic electronics. In: Hemment P.L.F., Lysenko V.S., Nazarov A.N. (eds) Perspectives, Science and Technologies for Novel Silicon on Insulator Devices. NATO Science Series (Series 3. High Technology), vol. 73. Springer, Dordrecht. https://doi.org/10.1007/978- 94-011-4261-8_23 30. Rife J.C., Miller M.M., Sheehan P.E. et al. Design and performance of GMR sensors for the detection of mag- netic microbeads in biosensors. Sensors and Actuators, 2003, A107, pp. 209–218. https://doi.org/10.1016/S0924- 4247(03)00380-7. 31. Lagae L., Wirix-Speetjens R., Das J. et al. On-chip manipulation and magnetization assessment of magnetic bead ensembles by integrated spin-valve sensors. J. Appl. Phys., 2002, vol. 91, iss. 7786, pp. 7445–7447. https://doi. org/10.1063/1.1447288 Received 23.05 2019 А. О. ДРУЖИНІН, Ю. М. ХОВЕРÊО, І. П. ОСТРОВСЬÊИЙ, Н. С. ЛЯХ-ÊАГУЙ, О. А. ПАСИНÊОВА Україна, Національний університет «Львівськая політехніка», Польща, м. Вроцлав, Інститут низьких температур та структурних досліджень E-mail: druzh@polynet.lviv.ua ДЕФОРМАЦІЙНО-СТИМУЛЬОВАНІ ЕФЕКТИ В МІКРОСТРУКТУРАХ АНТИМОНІДУ ІНДІЮ ЗА КРІОГЕННИХ ТЕМПЕРАТУР ДЛЯ СЕНСОРНИХ ЗАСТОСУВАНЬ У рîбîті дîсëіджåнî дåфîрмàційнî-стимуëьîâàнå змінåння åëåктрîфізи÷них пàрàмåтріâ ниткîпîдіб- них кристàëіâ àнтимîніду індіþ зà кріîгåнних тåмпåрàтур у сиëьних мàгнітних пîëях (дî 10 Тë). Ниткîпîдібні кристàëі InSb âирîщуâàëися мåтîдîм хімі÷них гàзîтрàнспîртних рåàкцій. Тåмпåрàтурà зони кристалізації становила 720 К, зони випаровування — 850 К. Легування кристалів здійснювалося дîмішкîþ îëîâà â прîцåсі рîсту, à кîнцåнтрàція нîсіїâ зàряду, згіднî з дîсëіджåннями Хîëëà, стàнîâиëà DOI: 10.15222/TKEA2019.3-4.03 УДК 625.315.592 Tekhnologiya i Konstruirovanie v Elektronnoi Apparature, 2019, No 3–4 9ISSN 2225-5818 SENSORS 7 Опис статті для цитування: Druzhіnin A. O., Khoverko Yu. M., Ostrovskii I. P., Liakh- Kaguy N. S., Pasynkova O. A. Deformation-induced effects in indium antimonide microstructures at cryogenic temperatures for sensor applications. Технология и кон- струирование в электронной аппаратуре, 2019, № 3-4, с. 3–9. http://dx.doi.org/10.15222/TKEA2019.3-4.03 Cite the article as: Druzhіnin A. O., Khoverko Yu. M., Ostrovskii I. P., Liakh- Kaguy N. S., Pasynkova O. A. Deformation-induced effects in indium antimonide microstructures at cryogenic temperatures for sensor applications. Tekhnologiya i Konstruirovanie v Elektronnoi Apparature, 2019, no. 3-4, pp. 3–9. http://dx.doi.org/10.15222/TKEA2019.3-4.03 А. А. ДРУЖИНИН, Ю. Н. ХОВЕРÊО, И. П. ОСТРОВСÊИЙ, Н. С. ЛЯХ-ÊАГУЙ, Е. А. ПАСЫНÊОВА Украина, Национальный университет «Львовская политехника» Польша, г. Вроцлав, Институт низких температур и структурных исследований E-mail: druzh@polynet.lviv.ua ДЕФОРМАЦИОННО-СТИМУЛИРОВАННЫЕ ЭФФЕКТЫ В МИКРОСТРУКТУРАХ АНТИМОНИДА ИНДИЯ ПРИ КРИОГЕННЫХ ТЕМПЕРАТУРАХ ДЛЯ СЕНСОРНЫХ ПРИМЕНЕНИЙ Иссëåдîâàнû дåфîрмàциîннî-стимуëирîâàннûå измåнåния эëåктрîфизи÷åских пàрàмåтрîâ микрîкри- стàëëîâ àнтимîнидà индия при криîгåннûх тåмпåрàтурàх â сиëьнûх мàгнитнûх пîëях (дî 10 Тë). Устàнîâëåнî, ÷тî знà÷åниå кîэффициåнтà тåнзî÷уâстâитåëьнîсти микрîкристàëëîâ InSb при тåм- пåрàтурå жидкîгî гåëия сîстàâëяåт GF4.2K ≈ 72 при кîнцåнтрàции нîситåëåй зàрядà 2∙1017 см–3 и GF4.2K ≈ 47 при кîнцåнтрàции 6∙1017 см–3 при дåфîрмàции îбрàзцîâ ε = –3∙10–4 îтн. åд. Дëя рàзрà- бîтки дàт÷икîâ мàгнитнîгî пîëя с мàгнитîрåзистиâнûм принципîм дåйстâия испîëьзуåтся эффåкт гигàнтскîгî мàгнåтîсîпрîтиâëåния, кîтîрîå дîстигàåт 720% при тåмпåрàтурå 4,2 Ê. Êëþ÷åâûå сëîâà: нитåâиднûå кристàëëû, InSb, кîэффициåнт тåнзî÷уâстâитåëьнîсти, мàгнåтîсîпрî- тиâëåниå. DOI: 10.15222/TKEA2019.3-4.03 УДК 625.315.592 6∙1016 — 6∙1017 см–3. Для досліджень були вибрані ниткоподібні кристали InSb довжиною 2—3 мм з по- перечними розмірами близько 30—40 мкм. Електричні контакти до ниткоподібних кристалів InSb були стâîрåні зà дîпîмîгîþ мікрîдрîтіâ Au діàмåтрîм 10 мкм, які утâîрþþть åâтåктику з мікрîкристàëîм під ÷àс імпуëьснîгî зâàрþâàння. Еëåктрîпрîâідність ниткîпîдібних кристàëіâ InSb дîсëіджуâàëàся â діàпàзîні тåмпåрàтури âід 4,2 дî 300 К. Кристали охолоджували в гелієвому кріостаті. Температуру вимірювали за допомогою термо- пари Cu–CuFe, каліброваної за допомогою сенсора CERNOX. Деформацію зразків (εε= –3∙10–4 âідн. îд. при 4,2 К) створювали за рахунок різниці в коефіцієнтах термічного розширення ниткоподібних крис- тàëіâ тà мàтåріàëу підкëàдки, зàкріпëþþ÷и кристàëи нà мідній підкëàдці тà îхîëîджуþ÷и дî низьких тåмпåрàтур. На основі порівняння опору деформованих та недеформованих кристалів були визначені коефіцієнти тензочутливості. Значення коефіцієнта тензочутливості мікрокристалів InSb за температури рідко- гî гåëіþ стàнîâить GF4.2K ≈ 72 зà кîнцåнтрàції нîсіїâ зàряду 2∙1017 см–3 тà GF4.2K ≈≈47 за концентра- ції 6∙1017 см–3. Для зразків InSb з концентрацією 6∙1016 см–3 коефіцієнт тензочутливості виявляє нети- пові властивості: вище температури рідкого азоту він змінює свій знак з позитивного на негативний. Абсолютне значення коефіцієнта тензочутливості як за гелієвих температур, так і в області кімнат- ної досягає приблизно 350, що можна пояснити наближенням концентрації носіїв заряду до фазового пе- рåхîду «мåтàë — діåëåктрик». Встановлено, що для застосування в п'єзорезистивних датчиках, працездатних в широкому темпера- турному діапазоні (4,2—300 К), слід використовувати мікрокристали InSb з концентрацією носіїв за- ряду 6∙1016 см–3. Дëя рîзрîбки дàт÷икіâ мàгнітнîгî пîëя з мàгнітîрåзистиâним принципîм дії âикîри- стовується ефект гігантського магнетоопору, який досягає 720% за температури 4,2 К. Такий дат- чик містить деформовані мікрокристали InSb з концентрацією носіїв заряду, що відповідає металево- му бîку пåрåхîду «мåтàë — діåëåктрик» і стàнîâить 2∙1017 см–3. Рîзрîбëåний мікрîåëåктрîнний дàт÷ик має надвисоку чутливість до магнітного поля (1500 мВ/Тл), а простота конструкції забезпечує одно- ÷àснî низьку інåрційність тà âисîку прîдуктиâність. Ключові слова: ниткоподібні кристали, InSb, коефіцієнт тензочутливості, магнетоопір.