Deformation-induced effects in indium antimonide microstructures at cryogenic temperatures for sensor applications
The authors investigate deformation-induced changes in the electrophysical parameters of the indium antimonide microcrystals at cryogenic temperatures in strong magnetic fields up to 10 T. Исследованы деформационно-стимулированные изменения электрофизических параметров микрокристаллов антимонида инд...
Saved in:
| Published in: | Технология и конструирование в электронной аппаратуре |
|---|---|
| Date: | 2019 |
| Main Authors: | , , , , |
| Format: | Article |
| Language: | English |
| Published: |
Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України
2019
|
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/167872 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Deformation-induced effects in indium antimonide microstructures at cryogenic temperatures for sensor applications / A.O. Druzhinin, Yu.M. Khoverko, I.P. Ostrovskii, N.S. Liakh-Kaguy, O.A. Pasynkova // Технология и конструирование в электронной аппаратуре. — 2019. — № 3-4. — С. 3-9. — Бібліогр.: 31 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-167872 |
|---|---|
| record_format |
dspace |
| spelling |
Druzhinin, A.O. Khoverko, Yu.M. Ostrovskii, I.P. Liakh-Kaguy, N.S. Pasynkova, O.A. 2020-04-12T15:42:02Z 2020-04-12T15:42:02Z 2019 Deformation-induced effects in indium antimonide microstructures at cryogenic temperatures for sensor applications / A.O. Druzhinin, Yu.M. Khoverko, I.P. Ostrovskii, N.S. Liakh-Kaguy, O.A. Pasynkova // Технология и конструирование в электронной аппаратуре. — 2019. — № 3-4. — С. 3-9. — Бібліогр.: 31 назв. — англ. 2225-5818 DOI: 10.15222/TKEA2019.3-4.03 https://nasplib.isofts.kiev.ua/handle/123456789/167872 625.315.592 The authors investigate deformation-induced changes in the electrophysical parameters of the indium antimonide microcrystals at cryogenic temperatures in strong magnetic fields up to 10 T. Исследованы деформационно-стимулированные изменения электрофизических параметров микрокристаллов антимонида индия при криогенных температурах в сильных магнитных полях (до 10 Тл). У роботі досліджено деформаційно-стимульоване змінення електрофізичних параметрів ниткоподібних кристалів антимоніду індію за кріогенних температур у сильних магнітних полях (до 10 Тл). en Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України Технология и конструирование в электронной аппаратуре Новые компоненты для электронной аппаратуры Deformation-induced effects in indium antimonide microstructures at cryogenic temperatures for sensor applications Деформационно-стимулированые эффекты в микроструктурах антимонида индия при криогенных температурах для сенсорных применений Деформаційно-стимульовані ефекти в мікроструктурах антимоніду індію за кріогених температур для сенсорних застосувань Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Deformation-induced effects in indium antimonide microstructures at cryogenic temperatures for sensor applications |
| spellingShingle |
Deformation-induced effects in indium antimonide microstructures at cryogenic temperatures for sensor applications Druzhinin, A.O. Khoverko, Yu.M. Ostrovskii, I.P. Liakh-Kaguy, N.S. Pasynkova, O.A. Новые компоненты для электронной аппаратуры |
| title_short |
Deformation-induced effects in indium antimonide microstructures at cryogenic temperatures for sensor applications |
| title_full |
Deformation-induced effects in indium antimonide microstructures at cryogenic temperatures for sensor applications |
| title_fullStr |
Deformation-induced effects in indium antimonide microstructures at cryogenic temperatures for sensor applications |
| title_full_unstemmed |
Deformation-induced effects in indium antimonide microstructures at cryogenic temperatures for sensor applications |
| title_sort |
deformation-induced effects in indium antimonide microstructures at cryogenic temperatures for sensor applications |
| author |
Druzhinin, A.O. Khoverko, Yu.M. Ostrovskii, I.P. Liakh-Kaguy, N.S. Pasynkova, O.A. |
| author_facet |
Druzhinin, A.O. Khoverko, Yu.M. Ostrovskii, I.P. Liakh-Kaguy, N.S. Pasynkova, O.A. |
| topic |
Новые компоненты для электронной аппаратуры |
| topic_facet |
Новые компоненты для электронной аппаратуры |
| publishDate |
2019 |
| language |
English |
| container_title |
Технология и конструирование в электронной аппаратуре |
| publisher |
Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України |
| format |
Article |
| title_alt |
Деформационно-стимулированые эффекты в микроструктурах антимонида индия при криогенных температурах для сенсорных применений Деформаційно-стимульовані ефекти в мікроструктурах антимоніду індію за кріогених температур для сенсорних застосувань |
| description |
The authors investigate deformation-induced changes in the electrophysical parameters of the indium antimonide microcrystals at cryogenic temperatures in strong magnetic fields up to 10 T.
Исследованы деформационно-стимулированные изменения электрофизических параметров микрокристаллов антимонида индия при криогенных температурах в сильных магнитных полях (до 10 Тл).
У роботі досліджено деформаційно-стимульоване змінення електрофізичних параметрів ниткоподібних кристалів антимоніду індію за кріогенних температур у сильних магнітних полях (до 10 Тл).
|
| issn |
2225-5818 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/167872 |
| citation_txt |
Deformation-induced effects in indium antimonide microstructures at cryogenic temperatures for sensor applications / A.O. Druzhinin, Yu.M. Khoverko, I.P. Ostrovskii, N.S. Liakh-Kaguy, O.A. Pasynkova // Технология и конструирование в электронной аппаратуре. — 2019. — № 3-4. — С. 3-9. — Бібліогр.: 31 назв. — англ. |
| work_keys_str_mv |
AT druzhininao deformationinducedeffectsinindiumantimonidemicrostructuresatcryogenictemperaturesforsensorapplications AT khoverkoyum deformationinducedeffectsinindiumantimonidemicrostructuresatcryogenictemperaturesforsensorapplications AT ostrovskiiip deformationinducedeffectsinindiumantimonidemicrostructuresatcryogenictemperaturesforsensorapplications AT liakhkaguyns deformationinducedeffectsinindiumantimonidemicrostructuresatcryogenictemperaturesforsensorapplications AT pasynkovaoa deformationinducedeffectsinindiumantimonidemicrostructuresatcryogenictemperaturesforsensorapplications AT druzhininao deformacionnostimulirovanyeéffektyvmikrostrukturahantimonidaindiâprikriogennyhtemperaturahdlâsensornyhprimenenii AT khoverkoyum deformacionnostimulirovanyeéffektyvmikrostrukturahantimonidaindiâprikriogennyhtemperaturahdlâsensornyhprimenenii AT ostrovskiiip deformacionnostimulirovanyeéffektyvmikrostrukturahantimonidaindiâprikriogennyhtemperaturahdlâsensornyhprimenenii AT liakhkaguyns deformacionnostimulirovanyeéffektyvmikrostrukturahantimonidaindiâprikriogennyhtemperaturahdlâsensornyhprimenenii AT pasynkovaoa deformacionnostimulirovanyeéffektyvmikrostrukturahantimonidaindiâprikriogennyhtemperaturahdlâsensornyhprimenenii AT druzhininao deformacíinostimulʹovaníefektivmíkrostrukturahantimoníduíndíûzakríogenihtemperaturdlâsensornihzastosuvanʹ AT khoverkoyum deformacíinostimulʹovaníefektivmíkrostrukturahantimoníduíndíûzakríogenihtemperaturdlâsensornihzastosuvanʹ AT ostrovskiiip deformacíinostimulʹovaníefektivmíkrostrukturahantimoníduíndíûzakríogenihtemperaturdlâsensornihzastosuvanʹ AT liakhkaguyns deformacíinostimulʹovaníefektivmíkrostrukturahantimoníduíndíûzakríogenihtemperaturdlâsensornihzastosuvanʹ AT pasynkovaoa deformacíinostimulʹovaníefektivmíkrostrukturahantimoníduíndíûzakríogenihtemperaturdlâsensornihzastosuvanʹ |
| first_indexed |
2025-11-25T14:43:14Z |
| last_indexed |
2025-11-25T14:43:14Z |
| _version_ |
1850517784267587584 |
| fulltext |
Tekhnologiya i Konstruirovanie v Elektronnoi Apparature, 2019, No 3–4
3ISSN 2225-5818
SENSORS
1
UDC 625.315.592
A. O. DRUZHІNIN 1, 2, Yu. M. KHOVERKO 1, 2, I. P. OSTROVSKII1,
N. S. LIAKH-KAGUY1, O. A. PASYNKOVA1
Ukraine, 1Lviv Polytechnic National University;
Poland, Wroclaw, 2Institute of Low Temperature and Structure Research PAS
E-mail: druzh@polynet.lviv.ua
DEFORMATION-INDUCED EFFECTS IN INDIUM
ANTIMONIDE MICROSTRUCTURES AT CRYOGENIC
TEMPERATURES FOR SENSOR APPLICATIONS
Despite the rapid progress and significant ad-
vances in microelectronics, there remain a lot of
problems that require further detailed study of
the physical properties and possible applications
of whisker crystals. Modern cryogenic electron-
ics requires highly sensitive, high-speed devices
and components of integrated circuits, capable of
operating at various temperature intervals, includ-
ing the cryogenic temperature range. Principles
of cryoelectronics are used to build a number of
devices (cryotrons, quantum and parametric ampli-
fiers, resonators, filters, sensors, delay lines, etc.)
based on silicon technologies [1]. On the other
hand, apart from using traditional silicon whisker
crystals in modern microelectronics, scientists
carry on intensive studies of other materials and
structures. For instance, there is an ongoing work
on creating solid state electronics based on silicon-
on-insulator structures [2]. Using polycrystalline
silicon in manufacturing of microelectronic devices
makes it possible to create multilayer structures.
One of the advantages of such structures is that
the resistivity of the created layers varies within
a very wide range (several orders of magnitude).
However, the need for deep cooling and related
technological difficulties considerably restrict the
use of such materials. Moreover, one of the most
important areas of modern magnetoelectronics is
the study of the magnetoresistive effect (MR), and
in recent years the emphasis has been placed on the
phenomenon of giant magnetoresistance (GMR).
In the developed devices [1], in which there are
new effects due to the interaction of «magnetic
electrons» with artificially created nanosized struc-
tures, a combination of magnetism and electronics
The authors investigate deformation-induced changes in the electrophysical parameters of the indium
antimonide microcrystals at cryogenic temperatures in strong magnetic fields up to 10 T. It is determined
that for strongly doped InSb microcrystals, the gauge factor at liquid-helium temperature is GF4.2K ≈ 72 for
the charge carrier concentration of 2∙1017 сm–3, while being GF4.2K ≈ 47 for the concentration of 6∙1017 сm–3,
at ε = –3∙10–4 rel. un. For the development of magnetic field sensors based on the magnetoresistive
principle, the effect of a giant magnetic resistivity reaching 720% at a temperature of 4.2 K is used.
Êëþ÷åâûå сëîâà: InSb whiskers, gauge factor, magnetoresistance, sensor.
is used, so they claim the birth of a new area of
magnetism and technology — magnetoelectronics.
In this case, InSb whisker crystals, due to their
morphology, high values of charge carrier mobil-
ity, structural perfection and high mechanical
strength, are a good model for studying the influ-
ence of external factors, in particular magnetic
field, for the concentrations corresponding to the
metal-semiconductor transition [3].
It is known that film materials using the
magnetoresistive effect, are sensitive to the elec-
tric current. Therefore, by changing the value
of the current one can change the amplitude of
the magnetoresistance. Thus, the authors of [4]
established the dependence of the magnetoresis-
tance of multi-layer materials based on Co, Ni or
Pt on the measuring current value. The obtained
results are explained [5] by the different effect
of the torque moment transfer by spin-polarized
charge carriers at different values of current. This
effect was anticipated by the authors of [6, 7] and
experimentally studied in [8—10].
On the other hand, the authors of [11, 12]
studied the manifestation of the magnetoresistive
effect in semiconductor-dispersed magnets. Here,
however, the magnetoresistance did not reach
high values (as opposed to InSb), which directly
affects the sensitivity of the devices developed on
their basis.
Previous studies conducted for InSb microcrys-
tals at cryogenic temperatures in strong magnetic
fields up to 14 T allowed detecting a number of
effects and to assess a number of electrophysical
parameters such as Shubnikov — de Haas (SdH)
oscillations (and their period) [13] and Dingle
DOI: 10.15222/TKEA2019.3-4.03
Tekhnologiya i Konstruirovanie v Elektronnoi Apparature, 2019, No 3–4
4 ISSN 2225-5818
SENSORS
2
temperature [3], to detect GMR and negative
magnetoresistance, associated with significant
spin-orbital exchange interaction.
Moreover, the influence of external factors,
such as deformation, allowed to determine the
occurrence of the Berry phase [14] in the longi-
tudinal magnetoresistance, which was previously
observed by the authors of [15—17] in bismuth. It
is obvious that the deformation leads to a change
in the scattering mechanisms, and may also af-
fect electrophysical parameters in the transverse
magnetoresistance, in particular the GMR value.
The authors of this work aimed at studying
the deformation-induced changes in the electro-
physical parameters of the indium antimonide
microcrystals at the cryogenic temperatures in
strong magnetic fields up to 10 T, particularly
in the transverse magnetoresistance, in order to
investigate the possibilities of using such crystals
in the magnetoresistive sensors of deformation and
magnetic field, which could be used under difficult
operating conditions.
Experiment details
In order for the InSb whisker crystals to grow,
i.e., for the material to be transferred to the crys-
tallization zone, it was necessary to create a con-
centration gradient. This was achieved by creating
a temperature gradient between the dissolution
zone and the crystallization zone.
The whisker crystallization temperature was
720 K, while the evaporation zone temperature
was 850 K. While growing, the crystals were
doped with tin admixture, and the concentration
of charge carriers, determined by using Hall effect,
was from 6∙1016 to 6∙1017 сm–3. The chosen InSb
whiskers were 2—3 mm in length and had lateral
dimensions of about 30—40 µm. Gold microwires
(10 microns in diameter) were pulse-welded to
the InSb micro-crystal to create eutectic contacts.
InSb whisker conductivity was studied in the
temperature range from 4.2 to 300 K. For these
studies, crystals were cooled down to the tempera-
ture of 4.2 K in a helium cryostat. The temperature
was measured by using a Cu–CuFe thermocouple,
calibrated with a CERNOX sensor.
The magnetic field effects of the whiskers were
studied using a Bitter magnet with the induction
of up to 14 T and the time scanning of field of
1.75 T/min in the temperature range of 4.2—77 K.
Stabilized electric current along the whisker was
created by the current source Keithley 224 in the
range of 1—10 mA, depending on the resistance of
the crystal. CERNOX sensor was used to measure
magnetic parameters. Being weakly sensitive to
magnetic field induction B, the device has a varia-
tion of the output signal of about 1% at B = 15 T.
In order to evaluate the possibility of using
InSb microcrystals in mechanical sensors, the au-
thors used a technique of deforming the samples
by producing a difference between the linear ex-
pansion coefficients of the crystal itself and the
substrate on which it was fixed [18]. The uniaxial
deformation of microcrystals was carried out by
affixing the crystals on the substrates with HL-931
glue with a polymerization temperature of 180°С.
According to this method, when the crystal is fixed
on the substrate, the thermal stress in the former
can be estimated by the ratio
0
1
,
1 1
T
s c
t
s cc T
s s c c
T T
T dt
T Tt
E T t E T t
(1)
were αc and αs are temperature coefficients of linear
expansion of the crystal and sub-
strate, respectively;
Ec, Es and νc, νs are Young’s moduli and Poisson co-
efficients of crystal and substrate
materials, respectively;
tc and ts are the thickness of the crystal and
the substrate.
Parameter T0 in this formula corresponds to
the technological temperature at which a rigid
connection is formed between the crystal and the
substrate, e.g., this may be the temperature of
adhesive polymerization.
To calculate the thermal deformation of the
whiskers, the authors used the temperature depen-
dences of the thermal expansion coefficients and of
Young's moduli for InSb and Cu from [19—21].
Assuming that the elastic coefficients depend
on temperature slightly in the temperature range
of 4.2—50 K, we can bring the formula (1) to the
following form:
0
,
T
t s c
T
T T T dt (2)
were γ is the coefficient that characterizes the ef-
ficiency of the transmission of deformation from
the substrate to the crystal, its value depending
on the geometry of the samples and the methods
of their fixation. In our case, the value of γ is
calculated according to [18] and is equal to 0.7.
Experimental results
The use of semiconductor sensors based on the
piezoresistive effect remains the most common means
for converting mechanical quantities into an electrical
signal due to the high sensitivity and reliability of the
design [18]. Therefore, the focus of the experimental
studies of InSb semiconductor crystals at temperatures
of 4.2—300 K in strong magnetic fields (up to 14 T)
Tekhnologiya i Konstruirovanie v Elektronnoi Apparature, 2019, No 3–4
5ISSN 2225-5818
SENSORS
3
Fig. 1. Temperature dependence of the resistance of
deformed InSb samples with different concentration of
charge carriers in the vicinity of the metal dielectric
transition (in сm–3):
1 — 6∙1016; 2 — 2∙1017; 3 — 6∙1017
R, Ω
11,75
11,50
3,0
2,0
0 50 100 150 200 250 T, K
1
2
3
Fig. 2. Temperature dependence of the gauge factor
for InSb microcrystals with different concentration of
charge carriers (in сm–3):
a) 1 — 2∙1017; 2 — 6∙1017; b) 6∙1016
GF
600
400
200
0
0 50 100 150 200 250 T, K
1
2
a)
b)
GF
200
0
–200
–400
150
50 100 200 T, K
was on determining exactly how the deformation af-
fected the samples. Thus, Fig. 1 shows the temperature
dependence of the resistance of microcrystals fixed on
copper substrates with an average deformation level
ε = –3∙10–4 rel. un. in the temperature range from
4.2 to 300 K.
Preliminary studies [3, 13] for free (not fixed)
InSb whiskers allowed estimating the gauge factor
(GF) at low temperatures, which can be deter-
mined by the ratio
0
0
,
R R
GF
R
(3)
were R0 is the resistance of the undeformed (free)
crystal;
R is the resistance of the deformed crystal;
ε is the uniaxial strain acting on the crystal.
Fig. 2 presents the temperature dependences
of the gauge factor for these crystals calculated
from the experimental data. Throughout the en-
tire studied temperature range, strongly doped
crystals (Fig. 1) demonstrate the temperature
dependence of resistance that is typical for metal.
Piezoresistance manifests itself typically in these
crystals [22]: when subjected to compression de-
formation, the resistance of the crystals decreases.
At the temperature of liquid helium, GF4.2K ≈ 72 for
InSb microcrystals with a concentration of 2∙1017 сm–3
and GF4.2K ≈ 47 for the crystals with a concentration
of 6∙1016 сm–3, at ε = –3∙10–4 rel. un. However,
for InSb microcrystals with a concentration
of 6∙1016 сm–3, gauge factor exhibits non-typical
properties: above the temperature of the liquid
nitrogen, it changes its sign from positive to
negative. The absolute value of the gauge factor
both at the temperature of liquid helium and in
the area of room temperatures reaches GF ≈ 350,
which can be explained by the fact that the charge
carrier concentration approaches the values of the
dielectric state of the metal—dielectric phase tran-
sition. Apparently, this is caused by the fact that
the ensemble of charge carriers at low tempera-
tures becomes reduced, because the carriers are
being freezed out, and their transport is believed
to be caused by strong spin-orbit interaction in
the range of jump conductivity by twice localized
impurities [3, 13, 23].
Investigation of the behavior of the magnetic
resistivity at low temperatures can also help
understand the processes occurring in crystals
at low temperatures. Thus, the authors of [3]
noticed that magnetoresistance changes its sign
from positive to negative in the longitudinal di-
rection, which indicates a characteristic feature
of the studied samples. Another such feature was
described in [24]: magnetoresistance deviated
from the quadratic dependence in the range of
relatively weak magnetic fields.
The authors of [24] explained the emergence of
a negative magnetic resistivity by the formation
of «pairs», i.e., two states with paired spins, that
are relatively close to each other and distant from
others, which exist near the Fermi level.
In addition, the authors of both [3] and [25]
received high values of Lande g-factor (g ≈ 60)
at a temperature of 4.2 K, indicating a strong
spin-orbit interaction.
Tekhnologiya i Konstruirovanie v Elektronnoi Apparature, 2019, No 3–4
6 ISSN 2225-5818
SENSORS
4
In its turn, the deformation leads to the redistri-
bution of energy zones and to the manifestation of
the negative magnetic resistivity effect, associated
with a change in the density of states near the Fermi
level in the magnetic field. If the «pair» is ionized
once, its level is shifted upward when the magnetic
field increases. Some of the levels shift downward,
and others shift upwards, which leads not only to
the displacement of the Fermi level, but also to
the change in the density of states in its vicinity.
The authors of [13, 17] demonstrated that if
the chemical potential is equal to or lies slightly
below the second subband, then the increase of the
magnetic field B and the movement of the charge
carriers in the boundary zones cause the chemical
potential to shift, and due to this fact, the resis-
tance first drops sharply and then monotonously
grows. This is connected to the competing influ-
ence of the magnetic field on the magnitude of the
multiplier and the index in the expression of the
carrier dispersion probability at the Fermi level.
Fig. 3, a shows the experimental results on the
transverse magnetoresistance for deformed crystals
with a charge carrier concentration of 6∙1016 сm–3
(which corresponds to the dielectric state of the
metal—dielectric phase transition). The figure
demonstrates that the deformation causes changes
in the conduction mechanisms inside the crystals,
which is reflected in the anomalous behavior of
the gauge factor. Thus, at low temperatures,
Shubnikov de Haas oscillations begin to manifest
themselves in InSb crystals for the transverse mag-
netoresistance, same as they do for the longitudinal
magnetoresistance.
For the deformed InSb microstructures with a
charge carrier concentration of 6∙1017 сm–3 (which
corresponds to the metal state of the metal—di-
electric phase transition), the magnetoresistance
significantly increases, reaching 250% (Fig. 3, b).
The probable reason for the growth of the mag-
netoresistance in such crystals is, obviously, the
release of «freezed-out» excess charge carriers due to
an increase in their mean concentration in the crystal,
and, consequently, an increase in average mobility.
This leads to the linearization of the characteristics
and a decrease of the temperature coefficient of re-
sistance of crystals in the 4.2—70 K range.
On the other hand, in the deformed InSb mi-
crocrystals with the charge carrier concentration
of 2∙1017 сm–3 (which corresponds to the metal-
dielectric phase transition), a giant magnetic resis-
tance was also observed, as well as its significant
increase in value (Fig. 3, c), reaching 720%. In
this case, however, the values of the temperature
magnetoresistivity coefficient were lower for the
temperature range of 4.2—70 K, which increases
the sensitivity to the magnetic field.
Fig. 3. Transversal magnetoresistance of InSb whiskers
with different tin concentration (in сm–3) for strained
samples at temperature range 4.2—70 K:
à — 6∙1016; b — 6∙1017; c — 2∙1017
a)
160
120
80
40
0 1 2 3 4 5 6 7 8 9 B, T
4.2 K
ΔR
/
R
0,
%
70 K
250
200
150
100
50
0
4.2 K
b)
70 K
ΔR
/
R
0,
%
1 2 3 4 5 6 7 8 9 B, T
600
400
200
0
0 1 2 3 4 5 6 7 8 9 B, T
4.2 K
c)
70 K
ΔR
/
R
0,
%
Application
The present stage of the development of new
branches of science and technology (space and
aviation technology, cryogenic technology, cryoen-
ergy, etc.) highlights the problem of creating
miniature highly sensitive mechanical, thermal,
and magnetic sensors with a special capacity to
operate at low temperatures [26—31].
The studies on the influence of deformation and
magnetic field on indium antimonide microcrystals
with a charge carrier concentration from 6∙1016 to
6∙1017 сm–3 allowed identifying a number of effects
that make such materials suitable for use as basis
for the piezoresistive sensors and magnetic field
magnetoresistive sensors.
A photo of a standard physical quantity sensor,
developed during this study, is shown in Fig. 4.
Tekhnologiya i Konstruirovanie v Elektronnoi Apparature, 2019, No 3–4
7ISSN 2225-5818
SENSORS
5
The temperature coefficient of resistance
(TCR) for such microcrystals was found to be
TCR ≈ 0.004 Ω/K (Fig. 1, curves 2, 3) at room
temperature (Fig. 2, a). Such samples can be
used to create mechanical sensors for two tem-
perature ranges: from 4.2 to 50 K and from 50
to 300 K, since there is a significant increase in
GF300K ≈ 720 at room temperature (Fig. 2, a).
For InSb crystals with a charge carrier con-
centration corresponding to the dielectric state
of the metal—dielectric phase transition, the
gauge factor is GF4.2K ≈ 350 and GF300K ≈ –350.
The temperature coefficient of resistance of such
samples is slightly lower (TCR ≈ 0.001 Ω/K).
The temperature-related change in the gauge factor
is linear (Fig. 2, b). Such samples can be used to
create piezoresistive sensors for a wide range of
temperatures.
The research on the magnetoresistance of de-
formed InSb microcrystals with a charge carrier
concentration from 6∙1016 to 6∙1017 сm–3 (covering
the metal—dielectric phase transition) at cryogenic
temperatures showed the following. The samples
with a charge carrier concentration of 6∙1016 cm–3
showed an instability of the temperature coef-
ficient of the magnetoresistance in the range of
4.2—70 K, caused by oscillation phenomena oc-
curing in the transverse magnetoresistance in mag-
netic fields up to 10 T. Such phenomena make it
impossible to use deformed InSb microcrystals in
magnetic field sensors at cryogenic temperatures.
The deformed InSb crystals with a concentration
of charge carriers of 6∙1017 сm–3 demonstrated
a significant increase in the magnetic resistance
(up to 250%) at a sensitivity of 600 mV/T. The
temperature resistance (magnetic resistivity) for
the temperature range of 4.2—70 K in the fields
up to 10 T was TCR ≈ 0.57 Ω/K (Fig. 3, b). As
for the deformed InSb crystals with the charge
carrier concentration of 6∙1017 сm–3 (which corre-
sponds to the metal—dielectric transition), there
was detected the giant magnetoresistance (which
increased up to 720%). The sensitivity to the
magnetic field here was 1500 mV/T. The tempera-
ture coefficient of resistance for the temperature
range of 4.2—70 K in the fields up to 10 T was
TCR ≈ 0.46 Ω/K (Fig. 3, c).
Fig. 4. Typical view of sensors of physical quantities
Conclusions
The studies on the influence of deformation on
the electrophysical parameters of indium antimonide
microcrystals at cryogenic temperatures in strong
magnetic fields (up to 10 T) allowed discovering a
number of effects that make such materials suitable
for use as basis for the magnetoresistive sensors of
deformation and magnetic field, that could function
under complex operating conditions.
It has been determined that the best option for
piezoresistive sensors that could function in a wide
temperature range (4.2—300 K) are the InSb mi-
crocrystals with carrier concentration of 6∙1016 сm–3
(which corresponds to the dielectric state of the
metal-dielectric transition).
Magnetic field sensors based on magnetore-
sistive principle were developed using the giant
magnetic resistivity effect reaching 720% at a tem-
perature of 4.2 K. Such sensors contain deformed
InSb microcrystals with a carrier concentration
corresponding to the metal-dielectric transition
(2∙1017 сm–3). The developed microelectronic sen-
sor has ultra-high sensitivity to a magnetic field
of 1500 mV/T, and the simplicity of its design
provides low inertia and high performance at the
same time.
REFERENCES
1. Zutic I., Fabian Ja., Das Sarma S. Spintronics:
Fundamentals and applications. Rev. Mod. Phys., 2004, vol. 76,
iss. 2, 323. https://doi.org/10.1103/RevModPhys.76.323
2. Holota V.I., Kogut I., Druzhinin A., Khoverko Y.
High sensitive active MOS photodetector on the local 3D
SOI-structure. Advanced Materials Research, 2014, vol. 854,
pp. 45–47. https://doi.org/10.4028/www.scientific.net/
AMR.854.45
3. Druzhinin A., Ostrovskii I., Khoverko Yu., Liakh-
Kaguy N. Negative magnetoresistance in indium antimonide
whiskers doped with tin. Low Temperature Physics, 2016,
vol. 42, pp. 453–457. https://doi.org/10.1063/1.4954778
4. Nepijko S.A., Kutnyakhov D., Odnodvorets L.V.,
Protsenko S.I. Sensor and microelectronic elements based on
nanoscale granular systems. J. Nanopart. Res., 2011, vol. 13, iss.
12, p. 6263–6281. https://doi.org/10.1007/s11051-011-0560-3
5. Mangin S., Ravelosona D., Katine J.A. et al. Current-
induced magnetization reversal in nanopillars with perpen-
dicular anisotropy. Nat. Mater., 2006, no. 5, pp. 210–215.
https://doi.org/10.1038/nmat1595
6. Berger L. Emission of spin waves by a magnetic mul-
tilayer traversed by a current. Phys. Rev. B, 1996, vol. 54,
iss. 13, 9353. https://doi.org/10.1103/PhysRevB.54.9353
7. Slonczewski J.C. Current-driven excitation of mag-
netic multilayers. J. Magn. Magn. Mater., 1996, vol. 159, iss.
1–2, L1–L7. https://doi.org/10.1016/0304-8853(96)00062-5
8. Waintal X., Myers E.B., Brouwer P.W., Ralph D.C.
Role of spin-dependent interface scattering in generating
current-induced torques in magnetic multilayers. Phys. Rev.
B, 2000, vol. 62, iss. 18, 12317. https://doi.org/10.1103/
PhysRevB.62.12317
9. Stiles M.D., Zangwill A. Anatomy of spin-transfer
torque. Phys. Rev. B, 2002, vol. 66, iss. 1, 014407. https://
doi.org/10.1103/PhysRevB.66.014407
10. Volkov S.О., Tkach О.P., Odnodvorets L.V.,
Huzhnya Ya.V. Magnetoresistive properties of nanosized film
materials: variation of measuring currents and minimization
of electronic noise. Journal Nano- And Electronic Physics,
Tekhnologiya i Konstruirovanie v Elektronnoi Apparature, 2019, No 3–4
8 ISSN 2225-5818
SENSORS
6
2016, vol. 8, iss. 3, 0303. http://dx.doi.org/10.21272/
jnep.8(3).03030
11. Druzhinin A., Ostrovskii I., Khoverko Yu.,
Yatsukhnenko S. Magnetic properties of doped Si<B,Ni>
whiskers for spintronics. Journal of Nano Research, 2016, vol.
39, pp. 43–54. https://doi.org/10.4028/www.scientific.
net/JNanoR.39.43
12. Yatsukhnenko S., Druzhinin A., Ostrovskii I. et al.
Nanoscale conductive channels in silicon whiskers with nickel
impurity. Nanoscale Research Letters, 2017, vol. 12, iss. 78,
pp. 1–7. https://doi.org/10.1186/s11671-017-1855-9
13. Druzhinin A., Ostrovskii I., Khoverko Y. et al.
Peculiarities of magnetoresistance in InSb whiskers at cryo-
genic temperatures. Materials Research Bulletin, 2015, vol.
72, pp. 324–330. https://doi.org/10.1016/j.materres-
bull.2015.08.016
14. Druzhinin A., Ostrovskii I., Khoverko Yu. et al.
Berry phase in strained InSb whiskers. Low Temperature
Physics, 2018, vol. 44, pp. 1189–1194. https://doi.
org/10.1063/1.5060974
15. Murakawa H., Bahramy M. S., Tokunaga M. et al.
Detection of Berry’s phase in a bulk Rashba semiconductor.
Science, 2013, vol. 342, iss. 6165, pp. 1490–1493. https://
doi.org/10.1126/science.1242247
16. Veldhorst M., Snelder M., Hoek M. et al.
Magnetotransport and induced superconductivity in Bi based
three-dimensional topological insulators. Phys. Status Solidi,
2013, vol. 7, iss. 1–2, pp. 26–38. https://doi.org/10.1002/
pssr.201206408
17. Nikolaeva A., Konopko L., Huberc T. E. et al. Effect
of weak and high magnetic fields in longitudinal and transverse
configurations on maneto-thermoelectric properties of quantum
Bi wires. Surface Engineering and Applied Electrochemistry,
2014, vol. 50, iss. 1, pp. 57–62. http://dx.doi.org/10.3103/
S1068375514010128
18. Druzhinin A.A., Lavitska E.N., Maryamova I.I.,
Kunert H.W. Stress imposing during microcrystals charac-
terization at cryogenic temperatures. Advanced Engineering
Materials, 2002, vol. 4, iss. 8, pp. 589–592. https://
doi.org/10.1002/1527-2648(20020806)4:8%3C589::AID-
ADEM589%3E3.0.CO;2-F
19. Xiaoling Zhang, Qingduan Meng, Liwen Zhang.
Dependence of the deformation of 128×128 InSb focal-
plane arrays on the silicon readout integrated circuit
thickness. The Open Electrical & Electronic Engineering
Journal, 2015, vol. 9, pp. 170–174. http://dx.doi.
org/10.2174/1874129001509010170
20. Liwen Zhang, Jiexin Pu1, Ming Shao, Na Li.
Numerical simulation and analysis of thermal stress in 8×8
InSb detector integrated microlens arrays with underfill.
Journal of Convergence Information Technology, 2012,
vol. 7, iss. 8.
21. Botcharova E., Freudenberger J., Schultz L.
Mechanical and electrical properties of mechanically alloyed
nanocrystalline Cu–Nb alloys. Acta Materialia, 2006, vol. 54,
iss. 12, pp. 3333–3341. https://doi.org/10.1016/j.acta-
mat.2006.03.021
22. Smith C.S. Piezoresistance effect in germanium and
silicon. Phys. Rev., 1954, vol. 94, iss. 1, pp. 42–49. https://
doi.org/10.1103/PhysRev.94.42
23. Druzhinin A., Ostrovskii I., Khoverko Yu. et al.
Variable-range hopping conductance in Si whiskers. Phys.
Status Solidi A, 2014, vol. 211, iss. 2, pp. 504–508. https://
doi.org/10.1002/pssa.201300162
24. Vanger А.I., Zabrodskii А.G., Tisnek Т.V.
Magnetoresistance of compensated Ge:As at ultrahigh fre-
quencies in the metal-insulator phase transition region. FTP,
2000, vol. 34, iss. 7, pp. 774–782. (Rus). https://journals.
ioffe.ru/articles/37181
25. Litvinenko K.L., Nikzad L., Pidgeon C.R. et al.
Temperature dependence of the electron Landé g factor in
InSb and GaAs. Phys. Rev. B, 2008, vol. 77, iss. 3, 033204.
https://doi.org/10.1103/PhysRevB.77.033204
26. Barlian A.A., Park S.J., Mukundan V., Pruitt B.L.
Design and characterization of microfabricated piezoresistive
floating element-based shear stress sensors. Sens. Actuators A,
2007, vol. 134, iss. 1, pp. 77–87. https://doi.org/10.1016/j.
sna.2006.04.035
27. Naumova O.V., Popov V.P., Aseev A.I. et al. Silicon-
on-insulator nanowire transistor for medical biosensors.
In EuroSOI International conference, 2009, Goteborg,
pp. 69–70. https://doi.org/10.1007/978-3-642-15868-1
28. Günel H. Y., Batov I. E., Hardtdegen H. et al.
Supercurrent in Nb/InAs-nanowire/Nb Josephson junctions.
J. Appl. Phys., 2012, vol. 112, iss. 3, 034316. https://doi.
org/10.1063/1.4745024
29. Claeys C., Simon E. Perspectives of silicon-on-
insulator technologies for cryogenic electronics. In: Hemment
P.L.F., Lysenko V.S., Nazarov A.N. (eds) Perspectives,
Science and Technologies for Novel Silicon on Insulator
Devices. NATO Science Series (Series 3. High Technology),
vol. 73. Springer, Dordrecht. https://doi.org/10.1007/978-
94-011-4261-8_23
30. Rife J.C., Miller M.M., Sheehan P.E. et al. Design
and performance of GMR sensors for the detection of mag-
netic microbeads in biosensors. Sensors and Actuators, 2003,
A107, pp. 209–218. https://doi.org/10.1016/S0924-
4247(03)00380-7.
31. Lagae L., Wirix-Speetjens R., Das J. et al. On-chip
manipulation and magnetization assessment of magnetic
bead ensembles by integrated spin-valve sensors. J. Appl.
Phys., 2002, vol. 91, iss. 7786, pp. 7445–7447. https://doi.
org/10.1063/1.1447288
Received 23.05 2019
А. О. ДРУЖИНІН, Ю. М. ХОВЕРÊО,
І. П. ОСТРОВСЬÊИЙ, Н. С. ЛЯХ-ÊАГУЙ, О. А. ПАСИНÊОВА
Україна, Національний університет «Львівськая політехніка»,
Польща, м. Вроцлав, Інститут низьких температур
та структурних досліджень
E-mail: druzh@polynet.lviv.ua
ДЕФОРМАЦІЙНО-СТИМУЛЬОВАНІ ЕФЕКТИ В МІКРОСТРУКТУРАХ
АНТИМОНІДУ ІНДІЮ ЗА КРІОГЕННИХ ТЕМПЕРАТУР
ДЛЯ СЕНСОРНИХ ЗАСТОСУВАНЬ
У рîбîті дîсëіджåнî дåфîрмàційнî-стимуëьîâàнå змінåння åëåктрîфізи÷них пàрàмåтріâ ниткîпîдіб-
них кристàëіâ àнтимîніду індіþ зà кріîгåнних тåмпåрàтур у сиëьних мàгнітних пîëях (дî 10 Тë).
Ниткîпîдібні кристàëі InSb âирîщуâàëися мåтîдîм хімі÷них гàзîтрàнспîртних рåàкцій. Тåмпåрàтурà
зони кристалізації становила 720 К, зони випаровування — 850 К. Легування кристалів здійснювалося
дîмішкîþ îëîâà â прîцåсі рîсту, à кîнцåнтрàція нîсіїâ зàряду, згіднî з дîсëіджåннями Хîëëà, стàнîâиëà
DOI: 10.15222/TKEA2019.3-4.03
УДК 625.315.592
Tekhnologiya i Konstruirovanie v Elektronnoi Apparature, 2019, No 3–4
9ISSN 2225-5818
SENSORS
7
Опис статті для цитування:
Druzhіnin A. O., Khoverko Yu. M., Ostrovskii I. P., Liakh-
Kaguy N. S., Pasynkova O. A. Deformation-induced
effects in indium antimonide microstructures at cryogenic
temperatures for sensor applications. Технология и кон-
струирование в электронной аппаратуре, 2019, № 3-4,
с. 3–9. http://dx.doi.org/10.15222/TKEA2019.3-4.03
Cite the article as:
Druzhіnin A. O., Khoverko Yu. M., Ostrovskii I. P., Liakh-
Kaguy N. S., Pasynkova O. A. Deformation-induced
effects in indium antimonide microstructures at cryogenic
temperatures for sensor applications. Tekhnologiya i
Konstruirovanie v Elektronnoi Apparature, 2019, no. 3-4,
pp. 3–9. http://dx.doi.org/10.15222/TKEA2019.3-4.03
А. А. ДРУЖИНИН, Ю. Н. ХОВЕРÊО,
И. П. ОСТРОВСÊИЙ, Н. С. ЛЯХ-ÊАГУЙ, Е. А. ПАСЫНÊОВА
Украина, Национальный университет «Львовская политехника»
Польша, г. Вроцлав, Институт низких температур и структурных исследований
E-mail: druzh@polynet.lviv.ua
ДЕФОРМАЦИОННО-СТИМУЛИРОВАННЫЕ ЭФФЕКТЫ
В МИКРОСТРУКТУРАХ АНТИМОНИДА ИНДИЯ ПРИ КРИОГЕННЫХ
ТЕМПЕРАТУРАХ ДЛЯ СЕНСОРНЫХ ПРИМЕНЕНИЙ
Иссëåдîâàнû дåфîрмàциîннî-стимуëирîâàннûå измåнåния эëåктрîфизи÷åских пàрàмåтрîâ микрîкри-
стàëëîâ àнтимîнидà индия при криîгåннûх тåмпåрàтурàх â сиëьнûх мàгнитнûх пîëях (дî 10 Тë).
Устàнîâëåнî, ÷тî знà÷åниå кîэффициåнтà тåнзî÷уâстâитåëьнîсти микрîкристàëëîâ InSb при тåм-
пåрàтурå жидкîгî гåëия сîстàâëяåт GF4.2K ≈ 72 при кîнцåнтрàции нîситåëåй зàрядà 2∙1017 см–3 и
GF4.2K ≈ 47 при кîнцåнтрàции 6∙1017 см–3 при дåфîрмàции îбрàзцîâ ε = –3∙10–4 îтн. åд. Дëя рàзрà-
бîтки дàт÷икîâ мàгнитнîгî пîëя с мàгнитîрåзистиâнûм принципîм дåйстâия испîëьзуåтся эффåкт
гигàнтскîгî мàгнåтîсîпрîтиâëåния, кîтîрîå дîстигàåт 720% при тåмпåрàтурå 4,2 Ê.
Êëþ÷åâûå сëîâà: нитåâиднûå кристàëëû, InSb, кîэффициåнт тåнзî÷уâстâитåëьнîсти, мàгнåтîсîпрî-
тиâëåниå.
DOI: 10.15222/TKEA2019.3-4.03
УДК 625.315.592
6∙1016 — 6∙1017 см–3. Для досліджень були вибрані ниткоподібні кристали InSb довжиною 2—3 мм з по-
перечними розмірами близько 30—40 мкм. Електричні контакти до ниткоподібних кристалів InSb були
стâîрåні зà дîпîмîгîþ мікрîдрîтіâ Au діàмåтрîм 10 мкм, які утâîрþþть åâтåктику з мікрîкристàëîм
під ÷àс імпуëьснîгî зâàрþâàння.
Еëåктрîпрîâідність ниткîпîдібних кристàëіâ InSb дîсëіджуâàëàся â діàпàзîні тåмпåрàтури âід 4,2 дî
300 К. Кристали охолоджували в гелієвому кріостаті. Температуру вимірювали за допомогою термо-
пари Cu–CuFe, каліброваної за допомогою сенсора CERNOX. Деформацію зразків (εε= –3∙10–4 âідн. îд.
при 4,2 К) створювали за рахунок різниці в коефіцієнтах термічного розширення ниткоподібних крис-
тàëіâ тà мàтåріàëу підкëàдки, зàкріпëþþ÷и кристàëи нà мідній підкëàдці тà îхîëîджуþ÷и дî низьких
тåмпåрàтур.
На основі порівняння опору деформованих та недеформованих кристалів були визначені коефіцієнти
тензочутливості. Значення коефіцієнта тензочутливості мікрокристалів InSb за температури рідко-
гî гåëіþ стàнîâить GF4.2K ≈ 72 зà кîнцåнтрàції нîсіїâ зàряду 2∙1017 см–3 тà GF4.2K ≈≈47 за концентра-
ції 6∙1017 см–3. Для зразків InSb з концентрацією 6∙1016 см–3 коефіцієнт тензочутливості виявляє нети-
пові властивості: вище температури рідкого азоту він змінює свій знак з позитивного на негативний.
Абсолютне значення коефіцієнта тензочутливості як за гелієвих температур, так і в області кімнат-
ної досягає приблизно 350, що можна пояснити наближенням концентрації носіїв заряду до фазового пе-
рåхîду «мåтàë — діåëåктрик».
Встановлено, що для застосування в п'єзорезистивних датчиках, працездатних в широкому темпера-
турному діапазоні (4,2—300 К), слід використовувати мікрокристали InSb з концентрацією носіїв за-
ряду 6∙1016 см–3. Дëя рîзрîбки дàт÷икіâ мàгнітнîгî пîëя з мàгнітîрåзистиâним принципîм дії âикîри-
стовується ефект гігантського магнетоопору, який досягає 720% за температури 4,2 К. Такий дат-
чик містить деформовані мікрокристали InSb з концентрацією носіїв заряду, що відповідає металево-
му бîку пåрåхîду «мåтàë — діåëåктрик» і стàнîâить 2∙1017 см–3. Рîзрîбëåний мікрîåëåктрîнний дàт÷ик
має надвисоку чутливість до магнітного поля (1500 мВ/Тл), а простота конструкції забезпечує одно-
÷àснî низьку інåрційність тà âисîку прîдуктиâність.
Ключові слова: ниткоподібні кристали, InSb, коефіцієнт тензочутливості, магнетоопір.
|