Investigation of the microstructure and properties of TRIP 800 steel subjected to low-cycle fatigue
The present work describes in detail the heterogeneousmicrostructure evolution of a high-strength steel (TRIP 800 steel) at the low-cycle fatigue conditions. Based on the extended investigations (via the optical and electron microscopy, the electron backscattering diffraction), we propose suggestion...
Збережено в:
| Дата: | 2019 |
|---|---|
| Автори: | , , , , , , , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут металофізики ім. Г.В. Курдюмова НАН України
2019
|
| Назва видання: | Успехи физики металлов |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/167939 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Investigation of the microstructure and properties of TRIP 800 steel subjected to low-cycle fatigue / Z.M. Rykavets, J. Bouquerel, J.-B. Vogt, Z.A. Duriagina, V.V. Kulyk, T.L. Tepla, L.I. Bohun, T.M. Kovbasyuk // Progress in Physics of Metals. — 2019. — Vol. 20, No 4. — P. 620-633. — Bibliog.: 23 titles. — eng. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-167939 |
|---|---|
| record_format |
dspace |
| spelling |
nasplib_isofts_kiev_ua-123456789-1679392025-02-10T01:48:28Z Investigation of the microstructure and properties of TRIP 800 steel subjected to low-cycle fatigue Дослідження мікроструктури та властивостей криці TRIP 800, схильної до малоциклової втоми Иследование микроструктуры и свойств стали TRIP 800, подверженной малоцикловой усталости Rykavets, Z.M. Bouquerel, J. Vogt, J.-B. Duriagina, Z.A. Kulyk, V.V. Tepla, T.L. Bohun, L.I. Kovbasyuk, T.M. The present work describes in detail the heterogeneousmicrostructure evolution of a high-strength steel (TRIP 800 steel) at the low-cycle fatigue conditions. Based on the extended investigations (via the optical and electron microscopy, the electron backscattering diffraction), we propose suggestions on the influence of phase composition on the mechanical properties and the crack-initiation processes. The preferential places of the crack nucleation caused by fatigue are detected, and the completeness of phase transformation via the induced plasticity is evaluated. Дана робота детально описує гетерогенну еволюцію мікроструктури високоміцної криці (TRIP 800) за умов малоциклової втоми. На підставі розширених досліджень (оптичною й електронною мікроскопією, дифракцією зворотнього розсіяння електронів) запропоновано рекомендації щодо впливу фазового складу на механічні властивості та процеси зародження тріщин. Виявлено осередки переважного зародження тріщини, спричинені втомою, й оцінено повноту фазового перетворення за рахунок індукованої пластичності. Данная работа подробно описывает гетерогенную эволюцию микроструктуры высокопрочной стали (TRIP 800) в условиях малоцикловой усталости. На основании расширенных исследований (оптической и электронной микроскопией, дифракцией обратного рассеяния электронов) предложены рекомендации относительно влияния фазового состава на механические свойства и процессы зарождения трещин. Обнаружены очаги предпочтительного зарождения трещины, что вызвано усталостью, и оценена полнота фазового превращения за счёт индуцированной пластичности. 2019 Article Investigation of the microstructure and properties of TRIP 800 steel subjected to low-cycle fatigue / Z.M. Rykavets, J. Bouquerel, J.-B. Vogt, Z.A. Duriagina, V.V. Kulyk, T.L. Tepla, L.I. Bohun, T.M. Kovbasyuk // Progress in Physics of Metals. — 2019. — Vol. 20, No 4. — P. 620-633. — Bibliog.: 23 titles. — eng. 1608-1021 DOI: https://doi.org/10.15407/ufm.20.04.620 https://nasplib.isofts.kiev.ua/handle/123456789/167939 en Успехи физики металлов application/pdf Інститут металофізики ім. Г.В. Курдюмова НАН України |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| language |
English |
| description |
The present work describes in detail the heterogeneousmicrostructure evolution of a high-strength steel (TRIP 800 steel) at the low-cycle fatigue conditions. Based on the extended investigations (via the optical and electron microscopy, the electron backscattering diffraction), we propose suggestions on the influence of phase composition on the mechanical properties and the crack-initiation processes. The preferential places of the crack nucleation caused by fatigue are detected, and the completeness of phase transformation via the induced plasticity is evaluated. |
| format |
Article |
| author |
Rykavets, Z.M. Bouquerel, J. Vogt, J.-B. Duriagina, Z.A. Kulyk, V.V. Tepla, T.L. Bohun, L.I. Kovbasyuk, T.M. |
| spellingShingle |
Rykavets, Z.M. Bouquerel, J. Vogt, J.-B. Duriagina, Z.A. Kulyk, V.V. Tepla, T.L. Bohun, L.I. Kovbasyuk, T.M. Investigation of the microstructure and properties of TRIP 800 steel subjected to low-cycle fatigue Успехи физики металлов |
| author_facet |
Rykavets, Z.M. Bouquerel, J. Vogt, J.-B. Duriagina, Z.A. Kulyk, V.V. Tepla, T.L. Bohun, L.I. Kovbasyuk, T.M. |
| author_sort |
Rykavets, Z.M. |
| title |
Investigation of the microstructure and properties of TRIP 800 steel subjected to low-cycle fatigue |
| title_short |
Investigation of the microstructure and properties of TRIP 800 steel subjected to low-cycle fatigue |
| title_full |
Investigation of the microstructure and properties of TRIP 800 steel subjected to low-cycle fatigue |
| title_fullStr |
Investigation of the microstructure and properties of TRIP 800 steel subjected to low-cycle fatigue |
| title_full_unstemmed |
Investigation of the microstructure and properties of TRIP 800 steel subjected to low-cycle fatigue |
| title_sort |
investigation of the microstructure and properties of trip 800 steel subjected to low-cycle fatigue |
| publisher |
Інститут металофізики ім. Г.В. Курдюмова НАН України |
| publishDate |
2019 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/167939 |
| citation_txt |
Investigation of the microstructure and properties of TRIP 800 steel subjected to low-cycle fatigue / Z.M. Rykavets, J. Bouquerel, J.-B. Vogt, Z.A. Duriagina, V.V. Kulyk, T.L. Tepla, L.I. Bohun, T.M. Kovbasyuk // Progress in Physics of Metals. — 2019. — Vol. 20, No 4. — P. 620-633. — Bibliog.: 23 titles. — eng. |
| series |
Успехи физики металлов |
| work_keys_str_mv |
AT rykavetszm investigationofthemicrostructureandpropertiesoftrip800steelsubjectedtolowcyclefatigue AT bouquerelj investigationofthemicrostructureandpropertiesoftrip800steelsubjectedtolowcyclefatigue AT vogtjb investigationofthemicrostructureandpropertiesoftrip800steelsubjectedtolowcyclefatigue AT duriaginaza investigationofthemicrostructureandpropertiesoftrip800steelsubjectedtolowcyclefatigue AT kulykvv investigationofthemicrostructureandpropertiesoftrip800steelsubjectedtolowcyclefatigue AT teplatl investigationofthemicrostructureandpropertiesoftrip800steelsubjectedtolowcyclefatigue AT bohunli investigationofthemicrostructureandpropertiesoftrip800steelsubjectedtolowcyclefatigue AT kovbasyuktm investigationofthemicrostructureandpropertiesoftrip800steelsubjectedtolowcyclefatigue AT rykavetszm doslídžennâmíkrostrukturitavlastivosteikricítrip800shilʹnoídomalociklovoívtomi AT bouquerelj doslídžennâmíkrostrukturitavlastivosteikricítrip800shilʹnoídomalociklovoívtomi AT vogtjb doslídžennâmíkrostrukturitavlastivosteikricítrip800shilʹnoídomalociklovoívtomi AT duriaginaza doslídžennâmíkrostrukturitavlastivosteikricítrip800shilʹnoídomalociklovoívtomi AT kulykvv doslídžennâmíkrostrukturitavlastivosteikricítrip800shilʹnoídomalociklovoívtomi AT teplatl doslídžennâmíkrostrukturitavlastivosteikricítrip800shilʹnoídomalociklovoívtomi AT bohunli doslídžennâmíkrostrukturitavlastivosteikricítrip800shilʹnoídomalociklovoívtomi AT kovbasyuktm doslídžennâmíkrostrukturitavlastivosteikricítrip800shilʹnoídomalociklovoívtomi AT rykavetszm isledovaniemikrostrukturyisvoistvstalitrip800podveržennoimalociklovoiustalosti AT bouquerelj isledovaniemikrostrukturyisvoistvstalitrip800podveržennoimalociklovoiustalosti AT vogtjb isledovaniemikrostrukturyisvoistvstalitrip800podveržennoimalociklovoiustalosti AT duriaginaza isledovaniemikrostrukturyisvoistvstalitrip800podveržennoimalociklovoiustalosti AT kulykvv isledovaniemikrostrukturyisvoistvstalitrip800podveržennoimalociklovoiustalosti AT teplatl isledovaniemikrostrukturyisvoistvstalitrip800podveržennoimalociklovoiustalosti AT bohunli isledovaniemikrostrukturyisvoistvstalitrip800podveržennoimalociklovoiustalosti AT kovbasyuktm isledovaniemikrostrukturyisvoistvstalitrip800podveržennoimalociklovoiustalosti |
| first_indexed |
2025-12-02T13:47:40Z |
| last_indexed |
2025-12-02T13:47:40Z |
| _version_ |
1850404514114306048 |
| fulltext |
620 ISSN 1608-1021. Prog. Phys. Met., 2019, Vol. 20, No. 4
https://doi.org/10.15407/ufm.20.04.620
z.m. rykaVeTS 1, J. bouQuerel 2, J.-b. VoGT 2, z.a. DuriaGina 1, 3,
V.V. kulyk 1, T.l. TePla 1, l.i. bohun 1, and T.m. koVbaSyuk 1
1 lviv polytechnic National University,
12 Bandera str., Ua-79013 lviv, Ukraine
2 the lille 1 University of science and technology,
Unité Matériaux et transformations,
Cité scientifique, F-59650 villeneuve-d’ascq, France
3 John paul ii Catholic University of lublin,
14 al. Racławickie, pl-20-950 lublin, poland
investigation of the Microstructure
and ProPerties of triP 800 steel
suBjected to low-cycle fatigue
low-alloyed TrIP steels are well known since the beginning of the 21st century and
used for automotive applications to ensure the passive safety. however, although
their behaviour is fully investigated at a monotonous behaviour, the case of cyclic
loading is not well studied. The present work describes in detail the heterogeneous-
microstructure evolution of a high-strength steel (TrIP 800 steel) at the low-cycle
fatigue conditions. based on the extended investigations (via the optical and elec-
tron microscopy, the electron backscattering diffraction), we propose suggestions on
the influence of phase composition on the mechanical properties and the crack-ini-
tiation processes. The preferential places of the crack nucleation caused by fatigue
are detected, and the completeness of phase transformation via the induced plastic-
ity is evaluated.
Keywords: low-cycle fatigue, microstructure, fractography, electron backscatter
diffraction.
1. introduction
Within the last decades, a considerable attention has been paid to the
Transformation Induced Plasticity effect occurring in steels containing
metastable austenite. In addition, a special category of advanced high
strength steels (AhSS), called low-alloyed TrIP aided steels, has been
© z.M. rykavets, J. bouquerel, J.-b. Vogt, z.A. Duriagina,
V.V. Kulyk, T.l. Tepla, l.I. bohun, T.M. Kovbasyuk, 2019
ISSN 1608-1021. Usp. Fiz. Met., 2019, Vol. 20, No. 4 621
Microstructure and Properties of TRIP 800 Steel Subjected to Low-Cycle Fatigue
developed in order to be used by the automotive industry for the body
in white (bIW) vehicle structure. The properties of such steels are re-
markable as they exhibit a great combination of mechanical strength
and ductility. Such a combination is directly linked to both the synergy
of the different constituting phases and the ability of the retained
austenite to transform to martensite when the steel is submitted to me-
chanical loading. It should be noted that similar phenomena of structur-
ing occur during the use of high-energy surface engineering methods [1,
2]. As those steels possess an enhanced formability and a high dynamic
energy absorption during high strain rate crash deformation (350
MJ ⋅ m−3 at 1000 s−1) [3] , it makes them suitable for automotive industry
[4–6], promoting safety and bIW design.
Moreover, as this kind of steel can be used for lightweight vehicle
structural components, its fatigue behaviour might be investigated. In-
deed, acquire the knowledge on the behaviour of TrIP steel submitted
to low or high cycle fatigue may prevent from in-use accidents.
low alloyed TrIP steels are known to own a multiphase structure
and contain ferrite (50–60%), carbide free bainite (b) and carbon en-
riched retained austenite (A) (10–20%). Some investigations also report
that part of this metastable austenite might already transformed, which
leads to the presence of a martensite/austenite constituent (M/A) [7]. In
addition, to ensure the TrIP effect, the grain size of the retained
austenite (γ) must be in 0.01µm to 1µm range [8]. Moreover, the stabil-
ity of retained austenite is stress state dependent i.e. the highest [3] for
uniaxial compression and the lowest for plane strain conditions. If re-
tained austenite is unstable, it transforms to martensite early during
deformation without any sensitive effect on ductility regardless of its
amount [6]. During plastic deformation, the transformation of retained
austenite to martensite provided a localized work-hardening effect
which relaxed the stress concentration, delaying the onset of necking,
and, increasing the uniform elongation. The newly formed hard marten-
site phase enhanced tensile strength [9, 10].
Although the behaviour of TrIP steels is well studied for monot-
onic deformation (as encountered for the sheet steel forming) and dy-
namic situation (as encountered for crash conditions), studies focusing
on the mechanical properties of TrIP steels when those latter are sub-
mitted to cyclic loading are quite recent [11–16]. Nevertheless, a few
attentions have been paid to the microstructure evolution and its influ-
ence on fatigue crack initiation or propagation [13], so that the link
between the microstructure evolution and the obtained mechanical prop-
erties remains unclear. In the present work, a TrIP 800 steel has been
submitted to cyclic loadings and its microstructure evolution has been
investigated by means of standard metallurgical investigations as well
as advanced analysis by ebSD.
622 ISSN 1608-1021. Prog. Phys. Met., 2019, Vol. 20, No. 4
Z.M. Rykavets, J. Bouquerel, J.-B. Vogt, Z.A. Duriagina, V.V. Kulyk et al.
2. experimental Procedure
2.1. Material
The material of the study is a low alloyed CMnSi TrIP aided steel with
the chemical composition given in Table 1. The material has been pro-
vided in thin sheet of 1 mm in thickness, but the supplier has given no
details regarding the rolling conditions. Nevertheless, when referring
to literature, it is supposed to be obtained by a standard TrIP steel
thermomechanical processing, which consists of the following steps as
represented in Fig. 1.
Fig. 1. Typical two step processing route (in terms of tempera-
ture, T, and time, t) leading to the TrIP steel microstructure
for low-alloyed carbon steel (α — ferrite, γ — austenite, b —
bainite, α′ — martensite)
Table 1. Chemical composition of the studied TRIP 800 steel
Chemical element С Mn Si P Al Fe
Weight percentage 0.20 2.20 0.53 0.0094 0.89 balanced
ISSN 1608-1021. Usp. Fiz. Met., 2019, Vol. 20, No. 4 623
Microstructure and Properties of TRIP 800 Steel Subjected to Low-Cycle Fatigue
2.2. Fatigue Tests
low-cycle fatigue tests were performed on a MTS servo-hydraulic ma-
chine under the total axial strain control ∆εt ranging from 0.6% to
1.4%. A push-pull mode (Rε = −1), a triangular waveform and a constant
strain rate of 2.10−3 ⋅ s−1 were employed.
Flat specimens, with a 12 mm gauge length and 6 mm width, were
machined within the rolling direction of the steel sheet. Strain was
measured by means of an extensometer of 8 mm gauge length.
The surfaces of the specimens were finely polished before testing.
The fatigue life was defined as the number of cycles leading to a drop
of 25% of the tensile stress taking as a reference the mid-life pseudo
stabilized hysteresis loop. The plastic strain was obtained by hysteresis
curves analysis.
2.3. Standard Microstructure Investigation
The microstructure of the TrIP steel and its evolution within mechani-
cal straining have been characterised by means of light optical micros-
copy (loM) and scanning electron microscopy (SeM). here, a FeI Quan-
ta 400 SeM has been used for fractography analysis and standard surface
analysis.
regarding the microstructure identification, etchants which are
recognised to be suitable for TrIP steel have been used [17]. The se-
lected etchants were lepera and sodium metabisulfite + Nital cumula-
tive etching.
For deep microstructural analyses, samples were polished with col-
loidal suspension. electron backscattering diffraction analyses were car-
ried out on a Jeol 7800F electron microscope fitted with an oxford
Instruments Aztec eDS/ebSD System.
The ebSD patterns were acquired with a Nordlys Max II detector,
with a 2 × 2 binning corresponding to a resolution of 320 × 240 pixels. The
parameters used for data collection were selected in order to ensure a
good compromise between angular resolution and acquisition time. Then,
a step size of 70 nm was chosen according to the optimisation method
proposed by Chen et al. [18]. In a same way, by choosing the highest
possible image resolutions for pattern processing and by optimising the
hough transform parameters, an angular resolution of 0.16° has been
measured. The data were post-processed using both oxford Instruments
Channel 5 and TSl oIM7 commercial software.
624 ISSN 1608-1021. Prog. Phys. Met., 2019, Vol. 20, No. 4
Z.M. Rykavets, J. Bouquerel, J.-B. Vogt, Z.A. Duriagina, V.V. Kulyk et al.
3. results and Discussion
3.1. Initial Microstructure Identification
The steel microstructure, as revealed by lepera etching and analysed by
loM, is reported in Fig. 2, a. In order to obtain more details regarding
the morphology of the encountered constituents, standard SeM analy-
sis, using a FeI Quanta 400 W-SeM, was carried out after cumulative
etching. The resulted microstructure observation is reported in Fig. 2, b.
Fig. 3. Images of (a) bainite microstructure, (b) grain-boundary map, (c) phase map
(blue — b.c.c. ferrite, yellow — f.c.c. austenite), and (d) KAM mapping
Fig. 2. Micrographs of TrIP 800 steel, loM, lepera etchant (a) and SeM micro-
graph of TrIP 800 steel, cumulative etching (b)
ISSN 1608-1021. Usp. Fiz. Met., 2019, Vol. 20, No. 4 625
Microstructure and Properties of TRIP 800 Steel Subjected to Low-Cycle Fatigue
In those observations the ferrite matrix (F) appears in dark brown
colour, retained austenite (A) appears in white and bainite (b) in lamel-
lar structure according to Girault et al. [17, 19]. Note that the brightest
phases may correspond to A or M (austenite or martensite), since con-
stituent-phases do not always show a unique appearance compared to
correlation among the local carbon content. Therefore, the carbon-rich
phases austenite and martensite may both appear in white, whereas
bainite may appear brownish to white depending on its residual carbon
content and dislocation density [20].
Although loM and SeM are unable to distinguish clearly austenite
from martensite, SeM can give some indication regarding the bainite
grain shape. The separation between bainitic ferrite and ferrite requires
advanced data analysis as there is no clear crystallographic differences
when comparing these both b.c.c. related constituents.
Then, in order to reach a much clearer distinction between these
phases with good-accurate scale, an ebSD analysis and its post-process-
ing were performed on the as-received samples. here, Fig. 3 shows im-
age quality (Fig. 3, b), phase identification (Fig. 3, c), and Kernel aver-
age misorientation (KAM) mapping (Fig. 3, d). As mentioned previously,
the distinction between ferrite and bainitic ferrite remains unclear if
only the crystallographic parameters are taken into consideration. Nev-
ertheless, when considering an area that exhibits the shape of a bainite
grain (as surrounded by a circle), a variation in term of disorientation
is observed and might be induced by the presence of geometrically nec-
essary dislocations (GND), which appears during the austenite to bainite
transformation, as described by zaefferer et al. [20].
3.2. Cyclic Strain Accommodation
The evolution of the stress amplitude with the number of cycles of the
TrIP 800 steel is reported, respectively, in Figs. 4, a and b. It is char-
acterised by a moderate hardening stage occurring during the first 10
cycles followed by a slight softening. Figure 4, b suggests that TrIP
soften continuously during fatigue under total strain control. At first,
a pronounced primary softening is observed for a period of 10% of the
fatigue life. For the remaining part of the life, TrIP 800 gently softens.
This observation is comparable with that of TrIP steels analysed in the
literature [13, 15].
3.3. Fractography and Surface Analysis
SeM observations of the external surface of the samples after fatigue
tests highlight the effect of cyclic loading. Slip marks of the specimens
fatigued at ∆εt = 0.6% and ∆εt = 0.8% up to failure are reported in
Fig. 5. The external surfaces are covered by extrusions and along some
626 ISSN 1608-1021. Prog. Phys. Met., 2019, Vol. 20, No. 4
Z.M. Rykavets, J. Bouquerel, J.-B. Vogt, Z.A. Duriagina, V.V. Kulyk et al.
Fig. 4. Stress amplitude vs. number of cycles (a) and fatigue life fraction (b) for the
TrIP 800 steel at a room temperature and a strain rate of 2 ⋅ 10−2 s−1
Fig. 5. SeM observations of the external
surfaces of the TrIP 800 steel after
fatigue at ∆εt = 0.6% (a) and ∆εt = 0.8%
(b)
Fig. 6. SeM observations of the external
surfaces of TrIP 800 steel after fatigue
at ∆εt = 1.4% pointing out short and long
micro-cracks
ISSN 1608-1021. Usp. Fiz. Met., 2019, Vol. 20, No. 4 627
Microstructure and Properties of TRIP 800 Steel Subjected to Low-Cycle Fatigue
of them micro-cracks propagated. The extrusions density increases as
the strain range increases but remains aligned only one direction.
For the sample deformed at the higher strain level, cracks were ori-
ented along two directions, appeared to be more open and were either
short or long, as reported in Fig. 6. Two populations of cracks are pre-
sented on the flat area of the specimen: short and long. This may indi-
cate that cracks originate from different phases. The most open cracks
may initiate in soft phase, allowing the crack to open.
In order to evidence the location of those cracks within the TrIP
steel microstructure, the surface of the sample after fatigue testing has
been etched. The resulting SeM micrographs are reported in Fig. 7. As
observed, micro-cracks are located in the ferritic matrix and at the inter-
face with the M/A and bainite constituents, rather along the bainite.
The correlation between matrix and other constituents is point of
interest, because cracks propagate mostly in ferrite, along other phases.
The decohesion, which takes place and leads to more opened cracks,
might be related to the different
level of hardness between the soft
ferritic constituent and the much
har der surrounding constituents.
Paying deeper attention suggests
that cracks seem to initiate from
the hard M/A islands and propa-
gate further into the ferrite sur-
rounding constituents (Fig. 8).
Fig. 8. Surface observation showing the
crack initiation within the ‘hard’ constit-
uents
Fig. 7. SeM surface observation of the external surface of the sample fatigued at
∆εt = 1.4% after etching
628 ISSN 1608-1021. Prog. Phys. Met., 2019, Vol. 20, No. 4
Z.M. Rykavets, J. Bouquerel, J.-B. Vogt, Z.A. Duriagina, V.V. Kulyk et al.
Those observations show similarities with literature findings [13, 16].
No crack initiation was detected neither on pores and precipitates in the
low-strained (0.6%) nor on the high-strained (1.4%) samples.
Fig. 10. Fracture surface of the specimen fatigued at ∆εt = 0.6% (a) and ∆εt = 0.7%
(b), where fatigue striations (a) and secondary cracks (b) are observed
Fig. 9. SeM micrographs showing low- and high-magnification images of the frac-
ture surface of the sample fatigued at ∆εt = 1.4%
ISSN 1608-1021. Usp. Fiz. Met., 2019, Vol. 20, No. 4 629
Microstructure and Properties of TRIP 800 Steel Subjected to Low-Cycle Fatigue
The study of the fractured surfaces is reported in Figs. 9 and 10.
The fracture surfaces comprise different zones corresponding to either
crack propagation by fatigue or to final and monotonic fracture. The
latter occupies the central part of the specimen and was all the wider as
the strain range was high. The borders of the fracture surface exhibited
plastic deformation associated with necking. The ductile feature of this
fracture was confirmed by the presence of dimples imaged at higher
magnification. The fatigue crack propagation zones were, in general,
near the edges of the specimen and appeared flat.
Fatigue fracture surface is usually identifiable by the presence of
striations. For this material and the experimental conditions, striations
were hardly observed due to fretting effect of the surfaces (Fig. 10, a).
Many secondary cracks were also observed (Fig. 10, b).
Fig. 11. KAM (a) and high resolution IQ + lAGb (b) maps of the as-received mate-
rial. KAM maps after fatigue at ∆εt = 0.6% (c) and ∆εt = 1.2% (d)
630 ISSN 1608-1021. Prog. Phys. Met., 2019, Vol. 20, No. 4
Z.M. Rykavets, J. Bouquerel, J.-B. Vogt, Z.A. Duriagina, V.V. Kulyk et al.
3.4. Advanced Microstructure Analysis
In order to evaluate the microstructure evolution of the TrIP 800 steel
when the latter was submitted to cyclic loading, SeM-ebSD investiga-
tion has been carried out. As the local misorientation, evolution studied
by KAM gives some indications on the variation of GND density and
hence the local strain, this criterion was selected. Note that in the
present case, due to the complex microstructure, the results obtained
with this parameter are only qualitative. Indeed, it is known that for
the as received materials for example, the GND density is higher in the
bainitic ferrite regions [20] than in the other ones. In addition, ebSD
post-processing has been performed on non-deformed (as received) and
strained samples in order to highlight stress-induced microstructural
changes.
As expected, and reported in the Fig. 11, a, the KAM distribution
of as-received material appears as rather not homogeneous at the mes-
oscopic scale. This clearly corresponds to the presence of bainitic ferrite
regions for which the measured misorientation is higher due to the pres-
ence of GND. This can be more clearly seen when the low-angle grain
boundaries (lAGb) are plotted within the global microstructure, see the
red coloured line in Fig. 11, b. Additional ebSD data processing has
shown that, for one piece of material taken from one spot to another one
in the plate, the microstructure was very inhomogeneous. Indeed, KAM
map has pointed out a higher density of misoriented areas suggesting
that the material was more or less deformed and/or transformed from
one specimen to another one.
The KAM maps obtained on fatigued samples clearly point out an
impact of the accumulated cyclic strain on the microstructure. Figures 11,
a, d are the KAM maps of the same specimen respectively before and
after fatigue at ∆εt = 1.2%. Strain accumulation is clearly seen through
the spatial distribution of areas with larger KAM values. This can be
explained by the fact that a very high plastic strain since the beginning
of cycling transforms the metastable austenite into martensite, which
tends to localize the deformation.
According to the literature [21], high martensite volume fractions
lead to higher local stresses. A strong deviation of stress distribution
within the grain gives a heterogeneous strain distribution within the
matrix material. Thereby, the literature [22, 23] draws our attention on
the heterogeneity of strain between constituents. Maximum of strain
gradient is at the interface between the ferritic matrix and the second
phase(s). The heterogeneity correlates with an increase of local strain in
the grain.
These observations may explain the presence of two different cracks
populations observed previously.
ISSN 1608-1021. Usp. Fiz. Met., 2019, Vol. 20, No. 4 631
Microstructure and Properties of TRIP 800 Steel Subjected to Low-Cycle Fatigue
4. Conclusions
The low cycle fatigue behaviour of the TrIP 800 steel has been investi-
gated at room temperature under total strain control and the evolution
of the microstructure with cycling studied by SeM-ebSD.
The following conclusions can be drawn:
(i) the material exhibits an appreciable cyclic softening during the
first percentages of the fatigue life;
(ii) short cracks are observed in the ferritic matrix and were often
associated with interfaces between ferrite matrix and hard phases;
(iii) ebSD data processing leading to KAM criterion is relevant for
characterization of the fatigued microstructure;
(iv) KAM criterion points out the inhomogeneity of the microstruc-
ture inside the plate from which the fatigue specimens were extracted;
(v) KAM criterion points out localisation of deformation after fatigue.
reFereNCeS
z.A. Duryahina, A.K. borysyuk, S.A. bespalov, and V.y. Pidkova, 1. Mater. Sci.,
48, No. 3: 364 (2012).
https://doi.org/10.1007/s11003-012-9514-x
z.A. Duryagina, S.A. bespalov, A.K. borysyuk, and V.ya. Pidkova, 2. Metallofiz.
Noveishie Tekhnol., 33, No. 5: 615 (2011).
N. Fonstein, 3. Advanced High Strength Sheet Steels (Cham: Springer: 2015).
https://doi.org/10.1007/978-3-319-19165-2
J.J. roa, I. Sapezanskaia, G. Fargas, r. Kouitat, A. redja4. ïmia, and A. Mateo,
Mater. Sci. Eng. A, 713: 287 (2018).
https://doi.org/10.1016/j.msea.2017.12.047
J. Van Slycken, J. bouquerel, P. Verleysen, K. Verbeken, J. Degrieck, and y. hou - 5.
baert, Mater. Sci. Forum, 638–642: 3585 (2010).
https://doi.org/10.4028/www.scientific.net/MSF.638-642.3585
P.J. Jacques, Q. Furnemont, S. Godet, T. Pardoen, K.T. Conlon, and F. Delan-6.
nay, Phil. Mag., 86, No. 16: 2371 (2006).
https://doi.org/10.1080/14786430500529359
h. Mousalou, A. Noori Teymorlu, N. Parvini Ahmadi, and S. yazdani, 7. Int. J.
Iron & Steel Society of Iran, 9, No. 1: 11 (2012).
I.-J. Park, S.-T. Kim, I.-S. lee, y.-S. Park, and M.b. Moon, 8. Mater. Trans., 50,
No. 6: 1440 (2009).
https://doi.org/10.2320/matertrans.mra2008252
S. Chatterjee, 9. Transformations in TRIP-Assisted Steels: Microstructure and
Properties (Darwin College: University of Cambridge: 2006).
o. hesse, J. Merker, M. brykov and V. efremenko, 10. Tribologie und Schmierung-
stechnik, 60, No. 6: 37 (2013) (in German).
P.I. Christodoulou, A.T. Kermanidis, and D. Krizan, 11. Int. J. Fatigue, 91, Part 1:
220 (2016).
https://doi.org/10.1016/j.ijfatigue.2016.06.004
l.T. robertson, T.b. hilditch, and P.D. hodgson, 12. Int. J. Fatigue, 30, No. 4:
587 (2008).
https://doi.org/10.1016/j.ijfatigue.2007.06.002
632 ISSN 1608-1021. Prog. Phys. Met., 2019, Vol. 20, No. 4
Z.M. Rykavets, J. Bouquerel, J.-B. Vogt, Z.A. Duriagina, V.V. Kulyk et al.
T. hilditch, h. beladi, P. hodgson, and N. Stanford, 13. Mater. Sci. Eng. A, 534:
288 (2012).
https://doi.org/10.1016/j.msea.2011.11.071
A.l. ly and K.o. Findley, 14. Int. J. Fatigue, 87: 225 (2016).
https://doi.org/10.1016/j.ijfatigue.2016.02.004
M. benedetti, V. Fontanari, M. barozzi, D. Gabellone, M.M. Tedesco, and S. Plano, 15.
Fatigue Fract. Engng. Mater. Struct., 40, No. 9: 1459 (2017).
https://doi.org/10.1111/ffe.12589
M. Abareshi and e. emadoddin, 16. Mater. Des., 32, No. 10: 5099 (2011).
https://doi.org/10.1016/J.MATDeS.2011.06.018
e. Girault, P. Jacques, P. harlet, K. Mols, J. Van humbeeck, e. Aernoudt, and 17.
F. Delannay, Mater. Charact., 40, No. 2: 111 (1998).
https://doi.org/10.1016/S1044-5803(97)00154-X
y. Chen, J. hjelen, S. S. Gireesh, and h. J. roven, 18. J. Microsc., 245, No. 2: 111
(2012).
https://doi.org/10.1111/j.1365-2818.2011.03551.x
e. Girault, A. Mertens, P.J. Jacques, y. houbaert, b. Verlinden, and J. Van hum-19.
beeck, Scr. Mater., 44, No. 6: 885 (2001).
https://doi.org/10.1016/S1359-6462(00)00697-7
S. zaefferer, P. romano, and F. Friedel, 20. J. Microsc., 230, No. 3: 499 (2008).
https://doi.org/10.1111/j.1365-2818.2008.02010.x
h. Quade, U. Prahl, and W. bleck, 21. Chemicke Listy, 105: s705 (2011).
Q. Furn22. émont, M. Kempf, P.J. Jacques, M. Göken, and F. Delannay, Mater. Sci.
Eng. A, 328, Nos. 1–2: 26 (2002).
https://doi.org/10.1016/S0921-5093(01)01689-6
r.h. Petrov, J. bouquerel, K. Verbeken, l.A.I. Kestens, P. Verleysen, and y. hou- 23.
baert, Mater. Sci. Forum, 638–642: 3447 (2010).
https://doi.org/10.4028/www.scientific.net/MSF.638-642.3447
received July 15, 2019;
in final version, November 04, 2019
З.М. Рикавець 1, Ж. Букерель 2, Ж.-Б. Воґьот 2, З.А. Дурягіна 1, 3,
В.В. Кулик 1, Т.Л. Тепла 1, Л.І. Богун 1, Т.М. Ковбасюк 1
1 Національний університет «львівська політехніка»,
вул. С. бандери 12, 79013 львів, Україна
2 Університет науки та технології лілль I,
відділення матеріалів і перетворень,
Наукове містечко, 59650 Вільнев-д’Аск, Франція
3 люблінський католицький університет яна павла ІІ,
ал. рацлавіцкє, 14, 20-950 люблін, польща
ДоСлІДжеННя мІКроСТрУКТУри ТА ВлАСТиВоСТей
КрицІ TrIP 800, СхильНої До мАлоциКлоВої ВТоми
Низьколеґовані TrIP-криці добре відомі з початку XXI століття та використову-
ються в автомобілебудуванні задля забезпечення пасивної безпеки. хоча їхню
по ведінку цілком досліджено за монотонного навантаження, проте недостатньо
вивчено за циклічного навантаження. Дана робота детально описує гетерогенну
еволюцію мікроструктури високоміцної криці (TrIP 800) за умов малоциклової
втоми. На підставі розширених досліджень (оптичною й електронною мікро -
ско пією, дифракцією зворотнього розсіяння електронів) запропоновано реко-
ISSN 1608-1021. Usp. Fiz. Met., 2019, Vol. 20, No. 4 633
Microstructure and Properties of TRIP 800 Steel Subjected to Low-Cycle Fatigue
мендації щодо впливу фазового складу на механічні властивості та процеси за-
родження тріщин. Виявлено осередки переважного зародження тріщини, спри-
чинені втомою, й оцінено повноту фазового перетворення за рахунок індукова-
ної пластичности.
Ключові слова: малоциклова втома, мікроструктура, фрактографія, дифракція
відбитих електронів.
З.М. Рыкавець 1, Ж. Букэрель 2, Ж.-Б. Вогёт 2, З.А. Дурягина 1, 3,
В.В. Кулык 1, Т.Л. Тэпла 1, Л.И. Богун 1, Т.М. Ковбасюк 1
1 Национальный университет «львовская политехника»,
ул. С. бандэры, 12, 79013 львов, Украина
2 Университет науки и технологии лилль I,
отдел материалов и преобразований,
Научный город, 59650 Вильнев-д’Аск, Франция
3 люблинский католический университет яна павла ІІ,
ал. рацлавицке, 14, 20-950 люблин, польша
иССлеДоВАНие миКроСТрУКТУры и СВойСТВ СТАли
TrIP 800, поДВержеННой мАлоциКлоВой УСТАлоСТи
Низколегированные TrIP стали хорошо известны с начала XXI века и использу-
ются в автомобилестроении для обеспечения пассивной безопасности. хотя их
поведение вполне исследовано при монотонной нагрузке, однако недостаточно
изучено при циклической нагрузке. Данная работа подробно описывает гетеро-
генную эволюцию микроструктуры высокопрочной стали (TrIP 800) в условиях
малоцикловой усталости. На основании расширенных исследований (оптической
и электронной микроскопией, дифракцией обратного рассеяния электронов)
предложены рекомендации относительно влияния фазового состава на механиче-
ские свойства и процессы зарождения трещин. обнаружены очаги предпочти-
тельного зарождения трещины, что вызвано усталостью, и оценена полнота фа-
зового превращения за счёт индуцированной пластичности.
Ключевые слова: малоцикловая усталость, микроструктура, фрактография, диф-
ракция отражённых электронов.
|