Structure, magnetic and magnetoresistive properties of composite materials based on ferromagnetic metals and alloys with different types of dielectric matrix
A literary review of the experimental results concerning phase state and crystal structure, magnetoresistive and magnetic properties of the thin-film composite materials formed on the base of granules of ferromagnetic Co metal or FexCo₁₋x alloy embedded into the insulator matrix (SiO, SiO₂, Al₂O₃) v...
Gespeichert in:
| Veröffentlicht in: | Успехи физики металлов |
|---|---|
| Datum: | 2019 |
| Hauptverfasser: | , , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут металофізики ім. Г.В. Курдюмова НАН України
2019
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/167941 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Structure, magnetic and magnetoresistive properties of composite materials based on ferromagnetic metals and alloys with different types of dielectric matrix / I.M. Pazukha, V.V. Shchotkin, Yu.O. Shkurdoda // Progress in Physics of Metals. — 2019. — Vol. 20, No 4. — P. 672-692. — Bibliog.: 53 titles. — eng. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-167941 |
|---|---|
| record_format |
dspace |
| spelling |
Pazukha, I.M. Shchotkin, V.V. Shkurdoda, Yu.O. 2020-04-17T09:22:25Z 2020-04-17T09:22:25Z 2019 Structure, magnetic and magnetoresistive properties of composite materials based on ferromagnetic metals and alloys with different types of dielectric matrix / I.M. Pazukha, V.V. Shchotkin, Yu.O. Shkurdoda // Progress in Physics of Metals. — 2019. — Vol. 20, No 4. — P. 672-692. — Bibliog.: 53 titles. — eng. 1608-1021 DOI: https://doi.org/10.15407/ufm.20.04.672 https://nasplib.isofts.kiev.ua/handle/123456789/167941 A literary review of the experimental results concerning phase state and crystal structure, magnetoresistive and magnetic properties of the thin-film composite materials formed on the base of granules of ferromagnetic Co metal or FexCo₁₋x alloy embedded into the insulator matrix (SiO, SiO₂, Al₂O₃) via different discovery methods is presented. As shown, the value of magnetoresistance, character of its field dependences and magnetic characteristics depend on the concentration and size distribution of ferromagnetic granules. At the specified conditions, the perpendicular anisotropy can be realized in the structures as ferromagnetic granule–insulator matrix; the reasons of such anisotropy are analysed. Представлено літературний огляд експериментальних результатів стосовно структурно-фазового стану, магнеторезистивних і магнетних властивостей тонкоплівкових композитних матеріалів, сформованих на основі ґранул феромагнетного металу Co або стопу FexCo₁₋x, втілених у діелектричну матрицю (SiO, SiO₂, Al₂O₃) шляхом використання різних метод одержання. Показано, що величина магнетоопору, характер його польових залежностей і магнетні характеристики залежать від концентрації та розподілу за розмірами феромагнетних ґранул. За певних умов у структурах типу феромагнетна ґранула–діелектрична матриця може бути реалізованою перпендикулярна анізотропія, найбільш ймовірні причини виникнення якої проаналізовано. Представлен литературный обзор современных экспериментальных результатов относительно структурно-фазового состояния, магниторезистивных и магнитных свойств тонкоплёночных композитных материалов, сформированных на основе гранул ферромагнитного металла Co или сплава FexCo₁₋x, внедрённых в диэлектрическую матрицу (SiO, SiO₂, Al₂O₃) при использовании разных методов получения. Показано, что величина магнитосопротивления, характер его полевых зависимостей и магнитные характеристики зависят от концентрации и распределения по размерам ферромагнитных гранул. При определённых условиях в структурах типа ферромагнитная гранула–диэлектрическая матрица может быть реализована перпендикулярная анизотропия, наиболее вероятные причины возникновения которой проанализированы. The authors acknowledge the Ministry of Education and Science of Ukraine for supporting this work within the framework of the State Budget Program (no. 0119U100777 for 2019–2021). en Інститут металофізики ім. Г.В. Курдюмова НАН України Успехи физики металлов Structure, magnetic and magnetoresistive properties of composite materials based on ferromagnetic metals and alloys with different types of dielectric matrix Структура, магнетні та магнеторезистивні властивості композиційних матеріалів на основі феромагнетних металів і стопів з різними типами діелектричної матриці Структура, магнитные и магниторезистивные свойства композиционных материалов на основе ферромагнитных металлов и сплавов с разными типами диэлектрической матрицы Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Structure, magnetic and magnetoresistive properties of composite materials based on ferromagnetic metals and alloys with different types of dielectric matrix |
| spellingShingle |
Structure, magnetic and magnetoresistive properties of composite materials based on ferromagnetic metals and alloys with different types of dielectric matrix Pazukha, I.M. Shchotkin, V.V. Shkurdoda, Yu.O. |
| title_short |
Structure, magnetic and magnetoresistive properties of composite materials based on ferromagnetic metals and alloys with different types of dielectric matrix |
| title_full |
Structure, magnetic and magnetoresistive properties of composite materials based on ferromagnetic metals and alloys with different types of dielectric matrix |
| title_fullStr |
Structure, magnetic and magnetoresistive properties of composite materials based on ferromagnetic metals and alloys with different types of dielectric matrix |
| title_full_unstemmed |
Structure, magnetic and magnetoresistive properties of composite materials based on ferromagnetic metals and alloys with different types of dielectric matrix |
| title_sort |
structure, magnetic and magnetoresistive properties of composite materials based on ferromagnetic metals and alloys with different types of dielectric matrix |
| author |
Pazukha, I.M. Shchotkin, V.V. Shkurdoda, Yu.O. |
| author_facet |
Pazukha, I.M. Shchotkin, V.V. Shkurdoda, Yu.O. |
| publishDate |
2019 |
| language |
English |
| container_title |
Успехи физики металлов |
| publisher |
Інститут металофізики ім. Г.В. Курдюмова НАН України |
| format |
Article |
| title_alt |
Структура, магнетні та магнеторезистивні властивості композиційних матеріалів на основі феромагнетних металів і стопів з різними типами діелектричної матриці Структура, магнитные и магниторезистивные свойства композиционных материалов на основе ферромагнитных металлов и сплавов с разными типами диэлектрической матрицы |
| description |
A literary review of the experimental results concerning phase state and crystal structure, magnetoresistive and magnetic properties of the thin-film composite materials formed on the base of granules of ferromagnetic Co metal or FexCo₁₋x alloy embedded into the insulator matrix (SiO, SiO₂, Al₂O₃) via different discovery methods is presented. As shown, the value of magnetoresistance, character of its field dependences and magnetic characteristics depend on the concentration and size distribution of ferromagnetic granules. At the specified conditions, the perpendicular anisotropy can be realized in the structures as ferromagnetic granule–insulator matrix; the reasons of such anisotropy are analysed.
Представлено літературний огляд експериментальних результатів стосовно структурно-фазового стану, магнеторезистивних і магнетних властивостей тонкоплівкових композитних матеріалів, сформованих на основі ґранул феромагнетного металу Co або стопу FexCo₁₋x, втілених у діелектричну матрицю (SiO, SiO₂, Al₂O₃) шляхом використання різних метод одержання. Показано, що величина магнетоопору, характер його польових залежностей і магнетні характеристики залежать від концентрації та розподілу за розмірами феромагнетних ґранул. За певних умов у структурах типу феромагнетна ґранула–діелектрична матриця може бути реалізованою перпендикулярна анізотропія, найбільш ймовірні причини виникнення якої проаналізовано.
Представлен литературный обзор современных экспериментальных результатов относительно структурно-фазового состояния, магниторезистивных и магнитных свойств тонкоплёночных композитных материалов, сформированных на основе гранул ферромагнитного металла Co или сплава FexCo₁₋x, внедрённых в диэлектрическую матрицу (SiO, SiO₂, Al₂O₃) при использовании разных методов получения. Показано, что величина магнитосопротивления, характер его полевых зависимостей и магнитные характеристики зависят от концентрации и распределения по размерам ферромагнитных гранул. При определённых условиях в структурах типа ферромагнитная гранула–диэлектрическая матрица может быть реализована перпендикулярная анизотропия, наиболее вероятные причины возникновения которой проанализированы.
|
| issn |
1608-1021 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/167941 |
| citation_txt |
Structure, magnetic and magnetoresistive properties of composite materials based on ferromagnetic metals and alloys with different types of dielectric matrix / I.M. Pazukha, V.V. Shchotkin, Yu.O. Shkurdoda // Progress in Physics of Metals. — 2019. — Vol. 20, No 4. — P. 672-692. — Bibliog.: 53 titles. — eng. |
| work_keys_str_mv |
AT pazukhaim structuremagneticandmagnetoresistivepropertiesofcompositematerialsbasedonferromagneticmetalsandalloyswithdifferenttypesofdielectricmatrix AT shchotkinvv structuremagneticandmagnetoresistivepropertiesofcompositematerialsbasedonferromagneticmetalsandalloyswithdifferenttypesofdielectricmatrix AT shkurdodayuo structuremagneticandmagnetoresistivepropertiesofcompositematerialsbasedonferromagneticmetalsandalloyswithdifferenttypesofdielectricmatrix AT pazukhaim strukturamagnetnítamagnetorezistivnívlastivostíkompozicíinihmateríalívnaosnovíferomagnetnihmetalívístopívzríznimitipamidíelektričnoímatricí AT shchotkinvv strukturamagnetnítamagnetorezistivnívlastivostíkompozicíinihmateríalívnaosnovíferomagnetnihmetalívístopívzríznimitipamidíelektričnoímatricí AT shkurdodayuo strukturamagnetnítamagnetorezistivnívlastivostíkompozicíinihmateríalívnaosnovíferomagnetnihmetalívístopívzríznimitipamidíelektričnoímatricí AT pazukhaim strukturamagnitnyeimagnitorezistivnyesvoistvakompozicionnyhmaterialovnaosnoveferromagnitnyhmetallovisplavovsraznymitipamidiélektričeskoimatricy AT shchotkinvv strukturamagnitnyeimagnitorezistivnyesvoistvakompozicionnyhmaterialovnaosnoveferromagnitnyhmetallovisplavovsraznymitipamidiélektričeskoimatricy AT shkurdodayuo strukturamagnitnyeimagnitorezistivnyesvoistvakompozicionnyhmaterialovnaosnoveferromagnitnyhmetallovisplavovsraznymitipamidiélektričeskoimatricy |
| first_indexed |
2025-11-26T06:50:28Z |
| last_indexed |
2025-11-26T06:50:28Z |
| _version_ |
1850616017158406144 |
| fulltext |
672 ISSN 1608-1021. Prog. Phys. Met., 2019, Vol. 20, No. 4
© I.M. PAzUKhA, V.V. ShChoTKIN, yu.o. ShKUrDoDA, 2019
https://doi.org/10.15407/ufm.20.04.672
i.m. Pazukha, V.V. ShChoTkin, and yu.o. ShkurDoDa
sumy state University,
2, Rymskyi-korsakov str., Ua-40007 sumy, Ukraine
structure, Magnetic
and Magnetoresistive ProPerties
of coMPosite Materials Based
on ferroMagnetic Metals
and alloys with different tyPes
of dielectric Matrix
A literary review of the experimental results concerning phase state and crystal
structure, magnetoresistive and magnetic properties of the thin-film composite ma-
terials formed on the base of granules of ferromagnetic Co metal or FexCo1−x alloy
embedded into the insulator matrix (Sio, Sio2, Al2o3) via different discovery meth-
ods is presented. As shown, the value of magnetoresistance, character of its field
dependences and magnetic characteristics depend on the concentration and size dis-
tribution of ferromagnetic granules. At the specified conditions, the perpendicular
anisotropy can be realized in the structures as ferromagnetic granule–insulator ma-
trix; the reasons of such anisotropy are analysed.
Keywords: composite, ferromagnetic material, insulator matrix, magnetoresistance,
magnetic properties.
1. introduction
The fundamental research of the physical properties of new nanosize fun c-
tional materials (granular film alloys [2, 3], composites [4], arrays of
magnetic nanoparticles [5], vacuum tunnel structures [6]), as well as
graphene material that can become an effective substitute for metallic
conductive matrices [7], is still actual in the context of the development
of the elemental base of spintronics [1]. As it was shown by the analysis
of previous studies [8–11], the combination of materials of the ferro mag-
netic component and conducting matrix makes possible to form structures
Properties of Composite Materials Based on Ferromagnetic Metals and Alloys
that combine high saturation fields with high thermostability, allows
realizing the effect of high magnetotransmission. Generally, refs. [8–
11] aimed at studying the phase state, crystal structure, magnetoresistive
properties of composite materials based on ferromagnetic materials with
different types of a non-magnetic matrix (metallic or insulator). It was
shown (see, e.g., ref. [8]) that the value of magne to resistance (Mr),
coercive force, and saturation field depend significantly on the size of
magnetic nanoparticles, their concentration, and distri bution in the non-
magnetic matrix. A specific feature of the ferromagnetic metal-dielectric
composite materials is the realization of the tunnel spin-polarized con-
duc tivity that causes the appearance of the tunnel magnetoresistance [12].
At the same time, the probability of occurrence of this effect and its magni-
tude essentially depends on the components volume fraction that is part
of their composition. An important question becomes the percolation
threshold, in the transition through which there is a change like compo-
site material conductivity. This is due to the difference in the conductivity
mechanisms of the metal (the processes of scattering in the volume of
metal granules) and insulator (tunnelling between the granules through
insulator channels) phases, its magnetic and magnetoresistive properties.
It is importantly from the point of view both problems of the physics
of magnetism and the applied aspect are the study of superparamagne -
tic → superferromagnetic → ferromagnetic transformations for the mag-
ne tic component [13]. As known [14], all magnetic nanoparticles, depen-
ding on the critical sizes D1(T) and D2(T), can be divided into three
categories: superparamagnetic, single-domain, and multi-domain ferro-
mag netic. here, D1(T) is a critical size between superparamagnetic
granules and single-domain particles at a certain temperature called
blocking tem pe rature, while D2(T) is a critical size between single-do-
main ferromagnetic granules and multi-domain particles. All three
above-mentioned species of nanoparticles have different magnetic pro-
perties under the applied field and affect differently on the magneto-
resistive effects.
For instance, the Co nanoparticles with sizes that do not exceed a
certain critical value, exhibit superparamagnetism due to their low
energy of magnetic anisotropy in single domains. Within the limits of
single-domain particles, magnetic moments change the direction in the
case when their thermal energy is greater than the energy of magnetic
anisotropy. Thus, the behaviour in a magnetic field of an ensemble of
this kind of single-domain particles has a paramagnetic nature. It is
well known [15] that paramagnetic nanoparticles are not suitable for
memory storage since thermal fluctuations lead to the loss of stored
data. To stabilize the residual magnetization at a zero external magnetic
field, the Si nanoparticles are introduced into the antiferromagnetic
matrix, e.g., a Sio2 matrix [15].
ISSN 1608-1021. Usp. Fiz. Met., 2019, Vol. 20, No. 4 673
674 ISSN 1608-1021. Prog. Phys. Met., 2019, Vol. 20, No. 4
I.M. Pazukha, V.V. Shchotkin, and Yu.O. Shkurdoda
Significant interest in FexCo1−x film alloys arose after the discovery
of the giant magnetoresistance effect in multilayer systems based on
ferromagnetic layers with nonmagnetic interlayers. They have widely
used as elements of various types of equipment and devices of modern
electronics [16]. In this case, the research of magnetoresistive and
magnetic properties of composite materials based on FexCo1−x introduced
into the insulator matrix as a magnetic material with high resistivity,
saturation magnetization, permeability in the high-frequency range,
and a high frequency of ferromagnetic resonance [17] remain relevant.
The goal of this work is to summarize the data on the phase state,
crystal structure, magnetic and magnetoresistive properties of composite
materials formed on the basis of the ferromagnetic materials’ granules
(Co, FexCo1−x) and insulator matrix (Sio, Sio2, Al2o3) by using different
methods depending on the thickness of samples, their composition and
heat treatment conditions (regime).
2. Structure of the Ferromagnetic–insulator-Type
Composite materials
Typically, for the formation of composite materials of a ferromagnetic–
insulator-type, different methods are used. These methods allow
realization of simultaneous deposition on the substrate of the metal and
insulator components (magnetron, ion-beam, resistive, etc.) [18], as well
as such as sol–gel and ion implantation methods [19, 20].
Cross-section TeM images of thin film sample with a total thickness
of 30 nm prepared by the co-evaporation technique of Co and Sio at
xСо = 83.33% [21] presented in Fig. 1, a. The sample consists of Co nano-
granules, between which channels with Sio are formed. According to
ref. [21], the reason for the segregation of Sio on the Co granules sur-
face is to decrease the system energy, since the surface energy of Sio is
much lower than Co. The average size of magnetic component grains, which
evenly distributed in the matrix of the insulator material, is circa 6 nm.
The method for the formation of composite materials by condensation
of a multilayer structure Co(0.7)/Sio2(3)]10/Sio2(10)/Si (the thickness in
the brackets is in nm) with ultra-thin layers is proposed in ref. [22]. An
additional buffer layer of Sio2 with a thickness of 10 nm application
leads to three-dimensional growth of the Co granules in the form of
spherical clusters. According to ref. [22], such growth of the magnetic
material on the buffer layer surface is due to the difference between the
surface energies of Co and Sio2. The next layer of amorphous Sio2
perfectly wets this granular Co layer, resulting in a surface layer having
a wave shape. At the next Co layer condensation, the formation of
clusters occurs predominantly on the grooves of the surface roughness.
The periodic repetition of the condensation of Co and amorphous Sio2
ISSN 1608-1021. Usp. Fiz. Met., 2019, Vol. 20, No. 4 675
Properties of Composite Materials Based on Ferromagnetic Metals and Alloys
layers results in the multilayer structure with self-organizing growth
(Fig. 1, b) [22]. The average size of the Co grains for the Co (0.7)/
Sio2(3)]10/Sio2(10)/Si structure does not exceed 3 nm.
Important for further analysis of the magnetic properties of compo-
site materials is the phase state of the magnetic components. As well
known, for Co, a low-temperature h.c.p. phase is stabilized in a bulk
state. The polymorphic transition from h.c.p. Co to f.c.c. Co occurs at
the temperatures of 690–700 K. however, the different phase state can
stabilize in Co granules depending on their size in the as-deposited state
[23–26]. The h.c.p. phase is stabilized only for granules with the size of
more than 40 nm. Simultaneously h.c.p. and f.c.c. phases have observed
if the granule size varies in the range from 20 to 40 nm. besides, for
granules with an average size of less than 20 nm, there is an f.c.c.-phase
only. It should also be taken into account that the embedding of Co into
the insulator matrix can change the ranges of granular sizes in which
the f.c.c. and h.c.p. phases are stabilized [27–29].
The results of the phase state and crystal structure investigations
[30] of as-deposited and annealed at a temperature of 700 K FeхСо1−х
thin film alloy is given in Fig. 2. According to the data of electron
microscopic and electrographic studies, for as-deposited (Fig. 2, а, b)
and annealed at a temperature of 700 K (Fig. 2, d, e) single-layer samples
with the thickness d = 10–80 and х > 30 аt.%, the phase state corresponds
to the b.c.c. FexCo1−x with a lattice parameter а = 0.292–0.293 nm. At
the electron diffraction patterns, for as-deposited films with х < 30 аt.%,
the lines that correspond to the reflection from the crystallographic pla-
nes of the b.c.c. and h.c.p. lattices are fixed (Fig. 2, c). The phase state
of such samples corresponds to the combination of solid solution (s.s.)
b.c.c.-FeхСо1−х + h.c.p.-Со with a lattice parameters аs.s. = 0.291–0.294 nm
Fig. 1. Cross-section TeM images of thin film sample with the total thickness of 30
nm prepared by the co-evaporation technique of Co and Sio at xСо = 83.33% [21] (a),
and [Co (0.7)/Sio2(3)]10/Sio2/Si multilayer thin film structure [22] (b) after con-
densation
I.M. Pazukha, V.V. Shchotkin, and Yu.O. Shkurdoda
and аСо = 0.250–0.253 nm, с = 0.410–0.413 nm, respectively. The analy-
sis of diffraction images for thin film alloys after the heat treatment up
to a temperature of 700 K indicates the presence of lines belonging to
the f.c.c.-phase. hence, thin-film alloys after the heat treatment also
have a two-phase state b.c.c.-FeхСо1−х + f.c.c.-Со. regarding the fixation
of f.c.c. Co below the temperature of the polymorphic transition in the
Co bulk state (T = 690–700 K), the authors [30] outline two possible
Fig. 3. TeM image (а) and XrD spectrum (b) for thin film sample based on ferro-
magnetic alloy Fe65Co35 and insulator matrix Sio2. The concentration of the mag-
netic component in the sample is х = 60 vol.%; the total thickness is 300 nm [17]
Fig. 2. electron diffraction patterns of FeхСо1−х single-layer thin films (d = 50 nm)
at as-deposited (а–c) and annealed at the temperature of 700 K (d–f ) states, where
x ≅ 80 (а, d), x ≅ 50 (b, e), and x ≅ 20 аt.% (c, f ) [30]
676 ISSN 1608-1021. Prog. Phys. Met., 2019, Vol. 20, No. 4
Properties of Composite Materials Based on Ferromagnetic Metals and Alloys
reasons. The first one is the high-temperature phase of stabilizes either
as a metastable. The second one is reflections from the f.c.c.-Co
correspond to the scattering from the set of packaging defects in h.c.p.
Co, which has an f.c.c. structure.
Figure 3 illustrates the transmission electron microscopy (TeM)
image and x-ray diffraction (XrD) spectrum for thin-film sample based
on ferromagnetic alloy Fe65Co35 and insulator matrix Sio2 with a total
thickness of 300 nm (the concentration of the magnetic component in
the sample is х = 60 vol.%) [16]. The X-ray pattern fixes the b.c.c.
phase that corresponds to the Fe65Co35 alloy, and the insulator component
is in an amorphous state. The average size of the magnetic component
grains is 6.2 nm, and the width of the dielectric channels is 1 nm. For
a system based on ferromagnetic alloy Fe65Co35 and insulator matrix
Sio2 at xFe65Co35
= 30.5 vol.%, only the b.c.c. phase that corresponds to the
FeCo granules with the average size of 3.3 nm fixed at the diffraction
images [13]. The heat treatment process up to 573 K leads to a monotonous
increase of their size by 1.5 times (Fig. 4).
3. magnetoresistive Properties
A perspective direction in the development of the physics of devices,
elements, and systems is the investigation of metal–insulator tunnel
structures, due to the wide possibilities of their practical use. A
characteristic feature of magnetoresistive properties composite materials
such as ferromagnetic–insulator is the presence of a tunnel spin-depen-
ISSN 1608-1021. Usp. Fiz. Met., 2019, Vol. 20, No. 4 677
Fig. 4. TeM images and electron diffraction patterns
(on insets) for thin film sample based on ferromagne -
tic alloy Fe50Co50 and insulator matrix Sio2 at the
magnetic component concentration х = 30.5% after
condensation (а) and annealing to 373 (b), 473 (c), and
573 K (d) [14]
678 ISSN 1608-1021. Prog. Phys. Met., 2019, Vol. 20, No. 4
I.M. Pazukha, V.V. Shchotkin, and Yu.O. Shkurdoda
dent conductivity, which leads to the appearance of the tunnelling mag-
ne toresistance effect (TMr) [31]. Such structures include composites
based on Co nanoparticles or alloys FexCo1−x in insulator matrices Sio2,
Sio, or Al2o3. The TMr effect in such systems reaches several percents
at a room temperature under magnetic fields up to 1 T [21, 32, 33].
Figure 5 shows field dependences of magnetoresistance (Mr) for
com posite materials prepared by the methods of layered condensation
(the initial structure is [Co(0.7)Sio2(3)]10/Sio2/Si [22]) and co-evaporation
techniques (cCo = 50 аt.%, d = 30 nm) [34].
From the shown graphs of the Mr(B), which were carried out at tem-
peratures of 25, 100 and 300 K, it follows that the magnetoresistance
is isotropic for both layered and simultaneous condensation.
In this case, composite materials that consist of ferromagnetic nano-
particles embedded in the insulator matrix can be considered as a system
that contains a large number of nanosize tunnel junctions [31]. The
value of the tunnelling conductivity depends on the distribution of the
metal particles size and the width of the insulator channels. Therefore,
the magnetoresistance value due to electrons spin-dependent tunnelling
through the insulator channels will depend on the magnetic particles
size and their distribution in the volume of the dielectric matrix. It
should be stressed that depending on the state (superparamagnetic,
single-domain, or multi-domain ferromagnetic), magnetic nanoparticles
can show different magnetic properties at an applied magnetic field and
affect differently the processes of spin-dependent scattering.
Fig. 5. Field dependences of magnetoresistance for [Co (0.7)Sio2(3)]10/Sio2/Si multi-
layer thin film systems (the measurement temperature is 25, 100, and 300 K) [22]
(а) and for Со- and Sio2-based composite prepared by the co-evaporation technique
(cCo = 50 аt.%, d = 30 nm, the measurement temperature is 300 K) [34] (b)
ISSN 1608-1021. Usp. Fiz. Met., 2019, Vol. 20, No. 4 679
Properties of Composite Materials Based on Ferromagnetic Metals and Alloys
Theoretical and experimental
investigations of the giant magneto-
resistive effect in metal composites
have shown [35–38] that the pre-
sence of multi-domain ferromagnetic
nanoparticles play a negative role
in its realization, while super para-
magnetic nanoparticles play a key
role [35]. In this case, the authors
of ref. [36] found that there is no definite monotonic relationship
between the sizes of nanoparticles and the magni tude of the effect. For
each specific system, in which the GMr realized, the maximum value of
the effect is fixed at a certain average magnetic nanoparticles size for
the given temperature of the heat treat ment. This indicates that single-
domain nanoparticles, rather than su per paramagnetic, predominate in
the magnetoresistive effect realization. Since the TMr originates from
spin-dependent tunnelling between mag netic metal nano particles or
granules through insulating channels in the case when the magnetic
component concentration is lower than the percolation thres hold,
therefore their size and magnetic state metal of nanoparticles have to be
taken into account as well. Thus, the authors of ref. [37] proposed a
phenomenological theoretical model describing a giant tun nel ling Mr in
nanosize metal–insulator structures. This model takes into account the
influence of insulator matrix type on the processes of spin polarization
of ferromagnetic nanoparticles and, as a result, on the tunnelling
magnetoresistive effect. In addition, in ref. [37], an effort to take into
account the contribution of single-domain nanoparticles con cerning
superparamagnetic in the tunnel magnetoresistance magni tude of the
metal–insulator composites was attempted. The comparative analysis
[38] of the calculation and experimental data for the Fe + Al2o3 and
Fe50Co50 + Sio2 systems showed that a satisfactory agreement of the
proposed model with the experiment is observed only if single-domain
ferromagnetic nanoparticles play a key role in the TMr effect realization.
The influence of the concentration of component on the magne to-
resistive properties of composite materials considered in this paper is
also associated with the change of the average size of magnetic granules
as the composition of the system changes. As seen in Fig. 6, the depen-
dence of Mr(x) is characterized by the presence of a clearly expressed
maximum [41] for both the film metal composites [39] and granular
Fig. 6. Concentration-dependent magne-
to resistance for (Fe50Co50+Al2o3)/S and
(Fe50Co50 + Sio2)/S thin film composite
[37]
680 ISSN 1608-1021. Prog. Phys. Met., 2019, Vol. 20, No. 4
I.M. Pazukha, V.V. Shchotkin, and Yu.O. Shkurdoda
alloys [40]. This factor indicates that the necessary conditions for the
charge carriers tunnelling were realized. Figure 7 shows the heat treat-
ment effect (up to 700 K) on the magnetoresistance and resistivity value
for composite based on Fe50Co50 and Sio2 at different concentrations of
magnetic material [13]. As shown, with increasing of annealing tempe-
rature, Mr for samples with less content of Fe50Co50, reaches a maximum
at the higher annealing temperature. According to refs. [37, 38], such
behaviour of the magnetoresistance can be explained by the fact that
single-domain ferromagnetic granules play a key role in the magneto-
resistive effect value.
The interest in the ferromagnetic–insulator composites is also condi-
tioned by the possibility of realization in them of both negative and
positive isotropic magnetoresistance [42, 43] in the narrow region of
Fig. 7. The dependence of magnetoresistance and the resistivity in the absence of
applied fields on the annealing temperature for Fe50Co50- and Sio2-based thin film
composite at the magnetic material concentration х = 17 (а), 24 (b), 30 (c), and
39 vol.% (d) [14]
ISSN 1608-1021. Usp. Fiz. Met., 2019, Vol. 20, No. 4 681
Properties of Composite Materials Based on Ferromagnetic Metals and Alloys
concentrations near the percolation threshold. As can be seen in Fig. 8,
two maximums in the magnetic field up to 0.1 T are observed on the
magnetic field dependences. At the same time, these given maximums
are observed with a decrease in the measurement temperature of 77 K
and after heat treatment of the samples. The possible reason for these
maximum appearing is the fact that the structure of thin-film composite
materials near the percolation threshold is characterized by the presence
of both isolated nanogranules and ferromagnetic clusters formed due to
their coalescence. Granules and clusters are characterized by different
values of the energy of magnetic anisotropy. besides, a strong dipole–
dipole interaction exists between them. because of the increase of the
local magnetic moments, the disordering under the weak magnetic fields
occurs which leads to the maximum appearance.
The diagrams of the tunnelling current flow for different values of
the induction of an external magnetic field under strong, zero, and
weak magnetic fields are presented in Fig. 9. It allows understanding
the mechanism of a positive isotropic Mr appearance in the ferro mag-
netic–insulator composite.
In the case of a strong field, the magnetic moments of the magnetic
granules and clusters are oriented in a parallel geometry to each other
(cluster A and granules B, D in Fig. 9, a). In the case, when the magnetic
moments of the granules are oriented in one direction, the probability
of electrons tunnelling between two adjacent magnetic granules will
maximize. Therefore, this creates favourable conditions for the charge
carriers tunnelling [44]. The electrical resistance of such a system will
be minimal.
In the case of a zero field, the magnetic moments of isolated granules
direct along the axes of easy magnetization. At the same time, if the
Fig. 8. Field-dependent magnetoresistance for Со- and Sio2-based composite at
хСо = 43% (а) [41] along with Со- and Al2on-based composite at хСо = 58% (b) [42]
682 ISSN 1608-1021. Prog. Phys. Met., 2019, Vol. 20, No. 4
I.M. Pazukha, V.V. Shchotkin, and Yu.O. Shkurdoda
concentration of the magnetic component is insignificant (much lower
than the percolation threshold), the axes of easy magnetization of
composite material granules randomly direct relative to each other.
Consequently, in the zero fields, the magnetic moments of granules
maximally disordered. It leads to an increase of resistance. Increasing
of the concentration of the magnetic component to a value close to the
percolation threshold causes the decrease of the width of the dielectric
channels, the association of the granules, and the formation of magnetic
clusters. This leads to the appearance of dipole–dipole interaction that
affects the orientation of magnetic moments of granules and clusters. Due
to the occurrence of anisotropic form, the magnetic moment of the cluster
will direct along its long axis. Since the energy of magnetic anisotropy for
a cluster is greater than the energy of anisotropy for a single granule, the
dipole–dipole interaction will influence on the orientation of magnetic
moments of the granules located near the cluster.
Thus, the regions of the same orientation of the magnetic moments
of the magnetic clusters and adjacent granules (cluster A and granule B
in Fig. 9, b) are formed in the sample. In contrast to the composite with
a magnetic component concentration far from the percolation threshold,
the resistance of such a sample will not reach the maximum value in a
zero field. At the remagnetization of the samples in case of a weak
magnetic field, the magnetic moments of the granules, located at a
Fig. 9. The diagrams of
tunnelling current flow for
different values of the in-
duction of an external
magnetic field under strong
(a), zero (b), and weak (c)
magnetic fields, where Bext
is the external magnetic
field, Bcl is the field creat-
ed by the magnetic moment
of the cluster [40]
ISSN 1608-1021. Usp. Fiz. Met., 2019, Vol. 20, No. 4 683
Properties of Composite Materials Based on Ferromagnetic Metals and Alloys
certain distance from the cluster (B), begin to orient along the field. At
the same time, the magnetic moment’s orientation of the granule (D, B)
located near the cluster is determined by the minimum of internal energy
and non-collinear direction of the cluster magnetic moment or the
external magnetic field direction (Fig. 9, c). hence, the maximum degree
of the disordering of magnetic moments is realized in the weak fields
(close to the fields created by clusters in the nearest surround). As a
result, the system is characterized by the greatest resistance value.
4. magnetic Properties
A considerable amount of works have been devoted to the study of the
magnetic properties of composite film materials based on ferromagnetic
Co or CoxFe1−x materials embedded in different types of insulator matrices
(Sio, Sio2, Al2o3) (see refs. [41, 45–51]). Note that Fe–Co is applied in
the engineering as a soft magnetic material with both magnetic com po-
nents, comparably large value of the magnetic saturation and Curie tem-
perature (see [52, 53] and refs. therein). As a rule, a detailed information
about the magnetic state of films is obtained from magnetic measurements
using SQUID (temperature range 5–300 K) or vibrating magnetometers
(temperature range 90–300 K) in a magnetic field up to 1 T [46, 50].
For example, concentration and the heat treatment effects on the
magnetic properties of (Fe50Co50 + Sio2)/S (S is a substrate) composites
were analysed in refs. [14, 17]. It is shown, that the magnitude of the
coercive force Вс does not exceed 1.8 mT in the concentration range of
the magnetic component х = 52–80% and reaches its minimum value of
0.78 mT at х = 60% (Fig. 10, a). The process of thermal annealing leads
Fig. 10. The coercivity (Вс) vs. the concentration of magnetic component (х) for
(Fe50Co50 + Sio2)/S composite [17] (а), and the magnetization curves for (Fe50Co50 +
+ Sio2)/S composite at х = 30.5 vol.% after condensation and heat treatment to 473
and 573 K [14] (b)
684 ISSN 1608-1021. Prog. Phys. Met., 2019, Vol. 20, No. 4
I.M. Pazukha, V.V. Shchotkin, and Yu.O. Shkurdoda
to an increase in both the saturation magnetization and the magnetic
susceptibility (Fig. 10, b).
results of the study of the magnetic properties of composite film
materials based on Co and Sio2 are presented in Figs. 11 and 12 [15, 34].
The analysis of magnetization curves showed that their shape and the
magnetic parameters (residual magnetization, saturation magnetization,
coercive force, and saturation field) also depend on the Co concentration
(xCo) and the measurement temperature.
It should also be noted that the analysis of the results of magnetostatic
studies of granular films made at room temperature for magnetization
Fig. 12. Normalized magnetization as a function of the applied field at the ‘in-
plane’ (1) and ‘out-of-plane’ (2) applied magnetic fields for Co- and Sio-based com-
posites with the total thickness of 30 nm at хCo = 50 at.% (а) and 90 at.% (b) [34]
Fig. 11. The dependence of magnetization on the external magnetic field strength
at the longitudinal measurement geometry along the direction of magnetization easy
axis for Со- and Sio2-based composite material measured at 300 K (а) and 3 K (b)
for concentrations хСо = 7 at.%, 28 at.%, and 49 at.% [15]
ISSN 1608-1021. Usp. Fiz. Met., 2019, Vol. 20, No. 4 685
Properties of Composite Materials Based on Ferromagnetic Metals and Alloys
in the plane of the film showed that by the concentration of ferromagnetic
metal or alloy in the films, all the samples can be divided into three
groups [46]
Much lower of the percolation threshold (х < 40 mol.%), the magne-
tization curves are typical for the superparamagnetic state. The shape
and slope of the curve near the zero magnetic fields are modified depen-
ding on the ferromagnetic material concentration and the measurement
temperature. Within the concentration range of 44 < x < 61 mol.%, the
magnetization curves (Fig. 13, a) have a characteristic slope in small
fields almost independently on the Co concentration and temperature. It
is noteworthy that the dependence of the magnetization on the magnetic
field in a quite wide range of fields is linear. The range of fields, in which
it retains its linearity, increases due to the increase of the Co concentra-
tion and reaching its maximum value for samples with a cobalt concen-
tration of 61 mol.% (Fig. 13). This behaviour may be attributed to the
presence of uniaxial anisotropy of the granules, crystallographically or
anisotropically related to the shape of the particles in the film having
the predominant orientation of their easy axes magnetization in a
direction perpendicular to the film plane. Additional experimental study
of these samples showed that the curves’ shape is not changed at the
‘in-plane’ magnetization at different directions of the magnetic field in
the film plane. Thus, it should be assumed that a uniaxial anisotropy with
easy axis magnetization oriented perpendicular to the film plane is
for med in these samples during the condensation processes. It should
also be noted that the perpendicular anisotropy field for the sample with
a concentration of Co х = 61 mol.% with extrapolation of the linear
Fig. 13. The magnetization curves for ‘in-plane’ magnetization at Т = 300 K for Со-
and Al2o3-based sample with different concentration of magnetic component (x) [45]
686 ISSN 1608-1021. Prog. Phys. Met., 2019, Vol. 20, No. 4
section of magnetization exceeds 200 mT. For higher concentrations
(х > 61 mol.%), the magnetization curves (Fig. 13, b) retain linearity
and all characteristic features of ‘hard’ magnetization, but the effective
field of perpendicular anisotropy with increasing Co concentration will
be decreased. Considering that, in this concentration range, the transition
of a granular system through the percolation threshold occurs; the
change in the value of perpendicular anisotropy is associated with an
increase of intergranular interaction, which forms a collective state,
whose magnetic properties begin to dominate over the properties of
individual granules.
It should be noted that the occurrence of perpendicular anisotropy
in granular films with a thickness much larger than the size of the gra-
nu les is a rare phenomenon, which is described only in several works
[41, 46, 51]. Self-organization of the granular state during the film
growth is a rather complicated process, which depends on many techno-
logical parameters. Therefore, an unambiguous interpretation of the
nature of this perpendicular anisotropy requires not only magnetic stu-
dies but also analysis of phase and crystal state, electron microscopy,
magnetic force microscopy data, etc. however, the most probable reasons
for the nature of anisotropy may be two of them.
The first one is the formation of elongated, ‘columnar’ form of gra-
nules in the process of growth. Then the anisotropy of the granule shape,
with the easy axis of magnetization is oriented perpendicular to the film
plane, will determine the magnetic anisotropy magnitude. During the
growth process, for compositions lower the percolation threshold, the
formation of granular structures was observed. This structure consists
of amorphous granules or granules with a cubic crystalline structure
whose crystallographic anisotropy is small for Co. These granules are in
the form of uniaxial ellipsoids with elongated axes oriented perpen di-
cularly to the film plane. Their form remains unchanged as the concen-
tration increases. Above the percolation threshold, the granules begin to
coalesce, which reduces the anisotropy of their resulting form and,
respectively, the magnetic anisotropy. In this case, the question of the
weak dependence of the anisotropy of the granule shape on the concen-
tration lower the percolation threshold remains unclear. The rather high
value of the percolation threshold in these systems is evidence to the
precisely oriented anisotropy of the granule shape.
The second possible reason is the crystallographic anisotropy inside
the granules. If Co granules have a hexagonal phase with high crystallo-
graphic anisotropy, then such granules can have considerable variation
in shape and size, but crystallographic anisotropy will be the same for
all. It will be oriented if all the granules grow in a hexagonal phase with
equally directed axes of easy magnetization. In the cases considered
above, this direction is perpendicular to the plane of the film, which is
I.M. Pazukha, V.V. Shchotkin, and Yu.O. Shkurdoda
ISSN 1608-1021. Usp. Fiz. Met., 2019, Vol. 20, No. 4 687
a low-probable event. Cooling to the room temperature is accompanied
with the appearance of some deformation perpendicular to the film
plane. It is due to the different coefficients of thermal expansion of the
film and the substrate. This could be the cause of the granular structural
transformation from the amorphous phase to hexagonal one with the
direction of its orientation along the strain direction. however, assuming
the crystallographic nature of the anisotropy of granules, the quite low
value of perpendicular anisotropy is not quite clear. According to ref.
[46], the anisotropy field of h.c.p. Co is approximately 950 mT. The
maximum value of perpendicular anisotropy in the considered films is
three times less. It could be assumed that the hexagonal axes of the
granules only partially oriented along the normal to the film. In addition
to the manifestations of perpendicular anisotropy, the characteristic
indications of randomly oriented anisotropy of the granules would have
to be observed in the magnetization curves. The electron diffraction
investigations show that granules are crystalline, and there is no orien-
tation of their crystallographic axes. besides, with such an assumption
about the origin of the anisotropy normal to the film plane, it is also
difficult to explain its decrease at the concentration of the magnetic
component above the percolation threshold.
Additional studies for samples with the maximum perpendicular
ani sotropy value make it clear that perpendicular anisotropy is related
to the anisotropy of individual granules rather than the film as a whole.
The magnetization curves obtained in the measurement geometries pa-
ral lel and perpendicular to the film plane show the characteristic be-
haviour for the multidomain state of the system with magnetization in
the domains perpendicular to the plane. In the demagnetized state of
the minimum energy of the ensemble with uniaxial single-domain gra-
nules with their easy axis magnetization perpendicular to the plane, will
correspond to such a magnetic state in which half of the magnetic
moments of the granule-domains are oriented parallel to the normal of
the film, and the other half is antiparallel to it. That is, the magnitude
of the film’s magnetization will not be retained when the magnetic field
removed. At the sample magnetization by an external field perpendicular
to the film, the magnetization increases due to the reorientation of the
individual granules moments and the formation of a collective magne-
tization whose modulus increases linearly with the field.
In addition, the magnetization curves obtained at different tempe-
ratures show an increase in coercivity with a decrease in temperature,
which is caused by the blocking of the magnetic moments of individual
granules. The coercivity of the field reaches the value of 55 mT at
T = 80 K. For magnetization in perpendicular geometry, the monotonous
increase in coercivity for magnetization in perpendicular geometry is
accompanied by an increase of coercivity in the parallel geometry of
Properties of Composite Materials Based on Ferromagnetic Metals and Alloys
688 ISSN 1608-1021. Prog. Phys. Met., 2019, Vol. 20, No. 4
I.M. Pazukha, V.V. Shchotkin, and Yu.O. Shkurdoda
measurement. Although the coercive field in this case is much smaller
and the residual magnetization is very small. The obtained data suggest
as follows: (i) the presence of magnetic particles in the ensemble of
magnetic nanoparticles; (ii) a slight disorientation of the directions of
the axes of easy magnetization of the granules; (iii) the presence of a
small part of the granules with another type of anisotropy and/or spatial
distribution of their easy magnetization axes.
Another fact that demonstrates the presence of perpendicular aniso-
tropy in the samples is a comparison of the concentration dependence of
the magnetization determined by magnetostatic measurements and the
magnitude of magnetization found from the measurements of ferromag-
netic resonance. In addition to the anisotropy of the granules, the films
have an ‘easily planar’ anisotropy associated with the demagnetization
factor of the sample as a whole.
5. Conclusions
The crystal structure and phase state, magnetoresistive, and magnetic
properties of Co- and FexCo1−x-based composite films with a different
type of insulator matrix (Sio, Sio2, Al2o3) are analysed in this work.
(i) The structure of ferromagnetic metal (Co or FexCo1−x)–insulator
(Sio, Sio2, Al2o3) composites consists of ferromagnetic granules with an
average size of 3–6 nm, separated by insulator channels of 1–2 nm wide.
The thermal annealing process results in a monotone increase in the ave-
rage size of the granules in 1.5 times.
(ii) It is shown that if the content of the magnetic component is
х = 30–50 at.%, the tunnel magnetoresistive effect is realized in such
structures. Amplitude of the effect is defined by the sizes of ferromagnetic
granules and insulator channels depending on the component concen-
trations. The temperature dependences of the magnetoresistance are
non-monotonic due to the increase of the size of magnetic granules and
width of insulator channels.
(iii) Near the percolation threshold, both negative and positive iso-
tropic magnetoresistance can be realized. The appearance of positive
iso tropic magnetoresistance in the range of fields up to 0.1 T is due to
the peculiarities of the structure of composite materials near the perco-
lation threshold. That is a result of different values of magnetic aniso-
tropy energy in isolated granules and clusters as well as the strong
dipole–dipole interaction between them.
(iv) The shape of magnetization curves is determined by the perco-
lation threshold in the system, which, depending on the compositions of
the samples, belongs to the range 44 < х < 61 at.%. This range is cha-
racterized by the independent nature of the dependence of М/Мs(В) on
the magnetic component concentration and the measurement temperature.
ISSN 1608-1021. Usp. Fiz. Met., 2019, Vol. 20, No. 4 689
Properties of Composite Materials Based on Ferromagnetic Metals and Alloys
below this range, the magnetization curves are typical for the super-
paramagnetic state, and above the range, they preserve linearity and all
indications of ‘hard’ magnetization.
(v) Important for practical application is the appearance of perpen-
dicular anisotropy in this type of composite materials at thicknesses
much larger than the size of the granules.
Acknowledgement. The authors acknowledge the Ministry of educa-
tion and Science of Ukraine for supporting this work within the frame-
work of the State budget Program (no. 0119U100777 for 2019–2021).
reFereNCeS
I.yu. Protsenko, P.K. Mehta, l.V. odnodvorets, C.J. Panchal, K.V. Tyschenko, 1.
yu.M. Shabelnyk, and N.I. Shumakova, J. Nano- Electron. Phys., 6, No. 1:
01031 (2014).
Ia.M. lytvynenko, I.M. Pazukha, and b.b. bibyk, 2. J. Nano- Electron. Phys., 6,
No. 2: 02014 (2014).
A.P. Singh, M. Mishra, and S.K. Dhawan, Conducting multiphase magnetic 3.
nanocomposites for microwave shielding application, Nanomagnetism (UK: one
Central Press: 2014), Ch. 10, p. 246.
D. lisjak and A. Mertelj, 4. Prog. Mater. Sci., 95: 286 (2018).
https://doi.org/10.1016/j.pmatsci.2018.03.003
yu.o. Shkurdoda, I.M. Pazukha, and A.M. Chornous, 5. Int. J. Min. Metall. Mater.,
24, No. 12: 1459 (2017).
https://doi.org/10.1007/s12613-017-1539-6
l. Vicarelli, S.J. heerema, C. Dekker, and h.W. zandbergen, 6. ACS Nano., 9, No. 4:
3428 (2015).
https://doi.org/10.1021/acsnano.5b01762
A. hirohata and K. Takanashi, 7. J. Phys. D: Appl. Phys., 47, No. 19: 193001 (2014).
https://doi.org/10.1088/0022-3727/47/19/193001
S.b. Dalavi, J. Theerthagiri, M.M. raja, and r.N. Panda, 8. J. Magn. Magn. Mater.,
344: 30 (2014).
https://doi.org/10.1016/j.jmmm.2013.05.026
A.r. Akbashev, A.V. Telegin, A.r. Kaul, and yu.P. Sukhorukov, 9. J. Magn. Magn.
Mater., 384: 75 (2015).
https://doi.org/10.1016/j.jmmm.2015.02.018
S. behrens and I. Appel, 10. Curr. Opin. Biotechnol., 39: 89 (2016).
https://doi.org/10.1016/j.copbio.2016.02.005
yu.I. Dzhezherya, A.F. Kravets, I.M. Kozak, A.ya. Vovk, and A.M. Pogorily, 11.
J. Nano- Electron. Phys., 6, No. 2: 02027 (2014).
X. li, y. li, y. Shia, F. Du, y. bai, z. Quan, and X. Xu, 12. Mater. Lett., 194: 227
(2017).
https://doi.org/10.1016/j.matlet.2017.02.028
D.S. Mclachlana, b.T. Doyle, and G. Sauti, 13. J. Magn. Mater. Magn., 458: 365
(2018).
https://doi.org/10.1016/j.jmmm.2018.03.002
C. Wang, y. zhang, P. zhang, y. rong, and T.y. hsu, 14. J. Magn. Magn. Mater.,
320, No. 5: 683 (2008).
https://doi.org/10.1016/j.jmmm.2007.08.007
690 ISSN 1608-1021. Prog. Phys. Met., 2019, Vol. 20, No. 4
I.M. Pazukha, V.V. Shchotkin, and Yu.O. Shkurdoda
r. Walia, J.C. Pivin, A.K. Chawla, r. Jayaganthanc, and r. Chandra15. , J. Alloys
Compd., 509, No. 6: l103 (2011).
https://doi.org/10.1016/j.jallcom.2010.11.151
h. Kockar and M. Alper, 16. J. Magn. Magn. Mater., 373: 128 (2015).
https://doi.org/10.1016/j.jmmm.2014.03.029
D. yao, S. Ge, and X. zhou, 17. Physica B, 405, No. 5: 1321 (2010).
https://doi.org/10.1016/j.physb.2009.11.077
e. Cattaruzza, G. battaglin, P. Canton, C. de Juli18. án Fernández, M. Ferroni,
F. Gonella, C. Maurizio, P. riello, C. Sada, C. Sangregorio, and b.F. Scremin,
Appl. Surf. Sci., 226, Nos. 1–3: 62 (2004).
https://doi.org/10.1016/j.apsusc.2003.11.032
r. Sen, G. C. Das, and S. Mukherjee, 19. J. Alloys Compd., 490, Nos. 1–2: 515 (2010).
https://doi.org/10.1016/j.jallcom.2009.10.072
P. Gangopadhyay, T. r. ravindran, b. Sundaravel, K.G.M. Nair, and b.K. Pa-20.
nigrahi, Nucl. Instrum. Methods B, 266, No. 8: 1647 (2008).
https://doi.org/10.1016/j.nimb.2008.01.043
G. li, J. Wang, J. Du, y. Ma, T. liu, and Q. Wang, 21. J. Magn. Magn. Mater.,
441: 448 (2017).
https://doi.org/10.1016/j.jmmm.2017.06.005
J.C. Denardin, M. Knobel, l.S. Dorneles, and l.F. Schelp, 22. Mater. Sci. Engineer.
B, 112, Nos. 2–3: 120 (2004).
https://doi.org/10.1016/j.mseb.2004.05.016
J.l. Maurice, J. briatico, J. Carrey, F. Petroff, l.F. Schelp, and A. Vaures, 23.
Philos. Mag. A, 79, No. 12: 2921 (1999).
https://doi.org/10.1080/01418619908212033
W. Wernsdorfer, C. Thirion, N. Demoncy, h. Pascard, and D. Mailly, 24. J. Magn.
Magn. Mater., 242–245, Part 1: 132 (2002).
https://doi.org/10.1016/S0304-8853(01)01153-2
o. Kitakami, h. Sato, and y. Shimada, 25. Phys. Rev. B, 56, No. 21: 13849 (1997).
https://doi.org/10.1103/Physrevb.56.13849
M. Jergel, I. Cheshko, y. halahovets, P. Siffalovic, I. Mat’ko, r. Senderak, 26.
S. Protsenko, e. Majkova, and S. luby, J. Phys. D: Appl. Phys., 42, No. 13:
135406 (2009).
https://doi.org/10.1088/0022-3727/42/13/135406
T. hinotsu, b. Jeyadevan, C.N. Chinnasamy, K. Shinoda, and K. Tohji, 27. J. Appl.
Phys., 95, No. 11: 7477 (2004).
https://doi.org/10.1063/1.1688534
V.V. Matveev, D.A. baranov, G.yu. yurkov, N.G. Akatiev, I.P. Dotsenko, and 28.
S.P. Gubin, Chem. Phys. Lett., 422, Nos. 4–6: 402 (2006).
https://doi.org/10.1016/j.cplett.2006.02.099
r.h. Kodama and A.S. edelstein, 29. J. Appl. Phys., 85, No. 8: 4316 (1999).
https://doi.org/10.1063/1.370354
D.I. Saltykov, yu.o. Shkurdoda, and I.yu. Protsenko, 30. J. Nano- Electron. Phys.,
10, No. 4: 04031 (2018).
https://doi.org/10.21272/jnep.10(4).04031
h. Fujimori, S. Mitani, and S. ohnuma, 31. Mater. Sci. Eng. B, 31, Nos. 1–2: 219 (1995).
https://doi.org/10.1016/0921-5107(94)08032-1
S. honda and y. yamamoto, 32. J. Appl. Phys., 93, No. 10: 7936 (2003).
https://doi.org/10.1063/1.1555832
S. honda, M. hirata, M. Ishimaru, 33. J. Magn. Magn. Mater., 290–291, Part 2:
1053 (2005).
ISSN 1608-1021. Usp. Fiz. Met., 2019, Vol. 20, No. 4 691
Properties of Composite Materials Based on Ferromagnetic Metals and Alloys
https://doi.org/10.1016/j.jmmm.2004.11.363
I.M. Pazukha, y.o. Shkurdoda, A.M. Chornous and l.V. Dekhtyaruk, 34. Int. J.
Modern Phys. B, 33, No. 12: 1950113 (119).
https://doi.org/10.1142/S0217979219501133
h. Wang, W.Q. li, S.P. Wong, W.y. Cheung, N. Ke, J.b. Xu, X. lu, and X. yan, 35.
Mater. Charact., 48, Nos. 2–3: 153 (2002).
https://doi.org/10.1016/S1044-5803(02)00200-0
h. Sang, z.S. Jiang, and y.W. Du, 36. J. Magn. Magn. Mater., 140–144, Part 1: 589
(1995).
https://doi.org/10.1016/0304-8853(94)01012-9
C. Wang, z. Guo, y. rong, T.y. hsu (Xu zuyao), 37. Phys. Lett. A, 329, No. 3: 236
(2004).
https://doi.org/10.1016/j.physleta.2004.07.004
C. Wang, y. rong, and T.y. hsu (Xu zuyao), 38. Mater. Lett., 60, No. 3: 379
(2006).
https://doi.org/10.1016/j.matlet.2005.08.055
I.M. Pazukha, D. o. Shuliarenko, o.V. Pylypenko, and l.V. odnodvorets, 39. J. Magn.
Mater., 485: 89 (2019).
https://doi.org/10.1016/j.jmmm.2019.04.079
M. Tamisari, F. Spizzo, M. Sacerdoti, G. battaglin, and F. ronconi, 40. J. Nanopart.
Res., 13: 5203 (2011).
https://doi.org/10.1007/s11051-011-0505-x
o.V. Stogne41. ĭ, A.V. Sitnikov, yu.e. Kalinin, S.F. Avdeev, and M.N. Kopytin, Phys.
Solid State, 49, No. 1: 164 (2007).
https://doi.org/10.1134/S106378340701026X
e.b. Dokukin, r.V. erhan, A.Kh. Islamov, M.e. Dokukin, N.S. Perov, and 42.
e.A. Gan’shina, Phys. Status Solidi B, 250, No. 8: 1656 (2013).
https://doi.org/10.1002/pssb.201248379
S. Sankar, A.e. berkowitz, and D.J. Smith, 43. Phys. Rev. B, 62, No. 21: 14273 (2000).
https://doi.org/10.1103/Physrevb.62.14273
J.C. Slonczewski, 44. Phys. Rev. B, 39, No. 10: 6995 (1989).
https://doi.org/10.1103/Physrevb.39.6995
D.I. Saltykov, yu.o. Shkurdoda, and I.yu. Protsenko, 45. J. Nano- Electron. Phys.,
10, No. 3: 03024 (2018).
https://doi.org/10.21272/jnep.10(3).03024
A.A. Timopheev, S.M. ryabchenko, V.M. Kalita, A.F. lozenko, P.A. Trotsenko, 46.
o.V. Stognei, and A.V. Sitnikov, Phys. Solid State, 53, No. 3: 494 (2011).
https://doi.org/10.1134/S1063783411030309
A.47. Vovk, V. Golub, l. Malkinski, A. Kravets, A. Pogoriliy, o. Shipil’, J. Magn.
Magn. Mater., 272–276: e1403 (2004).
https://doi.org/10.1016/j.jmmm.2003.12.902
A.ya. Vovk, J.Q. Wang, J.he, W. zhou, A.M. Pogoriliy, o.V. Shypil’, A.F. Kra-48.
vets, and h.r. Khan, J. Appl. Phys., 91, No. 12: 10017 (2002).
https://doi.org/10.1063/1.1480113
A.ya. Vovk, V.o. Golub, A.M. Pogoriliy, o.V. Shypil’, and A.F. Kravets, 49.
Metallofiz. Noveishie Tekhnol., 24, No. 9: 1277 (2002).
A.A. Timofeev, S.M. ryabchenko, A.F. lozenko, P.A. Trotsenko, o.V. Stogne50. ĭ,
A.V. Sitnikov, and S.F. Avdeev, Low Temp. Phys., 33, No. 11: 974 (2007).
https://doi.org/10.1063/1.2747075
A.e. Varfolomeev and M.V. Sedova, 51. Phys. Solid State, 45, No. 3: 529 (2003).
https://doi.org/10.1134/1.1562242
692 ISSN 1608-1021. Prog. Phys. Met., 2019, Vol. 20, No. 4
I.M. Pazukha, V.V. Shchotkin, and Yu.O. Shkurdoda
I.M. Melnyk, 52. T.M. radchenko, and V.A. Tatarenko, Metallofiz. Noveishie Tekhnol.,
32, No. 9: 1191 (2010).
T. Sourmail, 53. Prog. Mater. Sci., 50, No. 7: 816 (2005).
https://doi.org/10.1016/j.pmatsci.2005.04.001
received July 14, 2019;
in final version, November 12, 2019
І.М. Пазуха, В.В. Щоткін, Ю.О. Шкурдода
Сумський державний університет,
вул. римського-Корсакова, 2, 40007, Суми, Україна
СТрУКТУрА, мАГНеТНІ ТА мАГНеТореЗиСТиВНІ ВлАСТиВоСТІ
КомпоЗицІйНих мАТерІАлІВ НА оСНоВІ ФеромАГНеТНих меТАлІВ
І СТопІВ З рІЗНими ТипАми ДІелеКТричНої мАТрицІ
представлено літературний огляд експериментальних результатів стосовно струк-
турно-фазового стану, магнеторезистивних і магнетних властивостей тонкоплів-
кових композитних матеріалів, сформованих на основі ґранул феромагнетного
металу Co або стопу FexCo1−x, втілених у діелектричну матрицю (Sio, Sio2, Al2o3)
шляхом використання різних метод одержання. показано, що величина магне-
тоопору, характер його польових залежностей і магнетні характеристики зале-
жать від концентрації та розподілу за розмірами феромагнетних ґранул. За пев-
них умов у структурах типу феромагнетна ґранула–діелектрична матриця може
бути реалізованою перпендикулярна анізотропія, найбільш ймовірні причини
виникнення якої проаналізовано.
Ключові слова: композит, феромагнетний матеріал, діелектрична матриця, маг-
не тоопір, магнетні властивості.
И.М. Пазуха, В.В. Щёткин, Ю.А. Шкурдода
Сумский государственный университет,
ул. римского-Корсакова, 2, 40007 Сумы, Украина
СТрУКТУрА, мАГНиТНые и мАГНиТореЗиСТиВНые
СВойСТВА КомпоЗициоННых мАТериАлоВ НА оСНоВе
ФерромАГНиТНых меТАллоВ и СплАВоВ
С рАЗНыми ТипАми ДиЭлеКТричеСКой мАТрицы
представлен литературный обзор современных экспериментальных результатов
относительно структурно-фазового состояния, магниторезистивных и магнитных
свойств тонкоплёночных композитных материалов, сформированных на основе гра-
нул ферромагнитного металла Co или сплава FexCo1−x, внедрённых в диэлектри-
ческую матрицу (Sio, Sio2, Al2o3) при использовании разных методов получения.
показано, что величина магнитосопротивления, характер его полевых зависимо-
стей и магнитные характеристики зависят от концентрации и распре деления по
размерам ферромагнитных гранул. при определённых условиях в структурах
типа ферромагнитная гранула–диэлектрическая матрица может быть реализова-
на перпендикулярная анизотропия, наиболее вероятные причины возникнове-
ния которой проанализированы.
Ключевые слова: композит, ферромагнитный материал, диэлектрическая матри-
ца, магнитосопротивление, магнитные свойства.
|