Monitoring of glacier frontal parts on Galindez and Winter Islands (the Argentine Islands) in 2018—2019 years

The work presents an analysis of climate variability and glaciological changes of the Antarctic Peninsula and the results of glacier monitoring on Galindez Island and Winter Island (the Argentine Islands in the Wilhelm Archipelago, Antarctic Peninsula) in 2018—2019. The main objective of research w...

Full description

Saved in:
Bibliographic Details
Published in:Український антарктичний журнал
Date:2019
Main Authors: Marusazh, Kh.I., Hlotov, V.M., Siejka, Z.
Format: Article
Language:English
Published: Національний антарктичний науковий центр МОН України 2019
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/168327
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Monitoring of glacier frontal parts on Galindez and Winter Islands (the Argentine Islands) in 2018—2019 years / Kh.I. Marusazh, V.M. Hlotov, Z. Siejka // Український антарктичний журнал. — 2019. — № 2 (19). — С. 26-37. — Бібліогр.: 33 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-168327
record_format dspace
spelling Marusazh, Kh.I.
Hlotov, V.M.
Siejka, Z.
2020-04-30T11:20:56Z
2020-04-30T11:20:56Z
2019
Monitoring of glacier frontal parts on Galindez and Winter Islands (the Argentine Islands) in 2018—2019 years / Kh.I. Marusazh, V.M. Hlotov, Z. Siejka // Український антарктичний журнал. — 2019. — № 2 (19). — С. 26-37. — Бібліогр.: 33 назв. — англ.
1727-7485
https://nasplib.isofts.kiev.ua/handle/123456789/168327
528.06/528.72
The work presents an analysis of climate variability and glaciological changes of the Antarctic Peninsula and the results of glacier monitoring on Galindez Island and Winter Island (the Argentine Islands in the Wilhelm Archipelago, Antarctic Peninsula) in 2018—2019. The main objective of research was to determine how the volumes of glaciers changed in 2018—2019 in the course of a complex study.
У статті представлено аналіз кліматичних та гляціологічних змін Антарктичного півострова та результати моніторингу льодовиків на островах Галіндез та Вінтер (Аргентинські острови Архіпелагу Вільгельма, Антарктичний півострів) за період 2018—2019 рр. Метою роботи було визначення змін поверхневих об’ємів льодовиків на островах Галіндез та Вінтер за результатами комплексних досліджень за період 2018—2019 рр.
en
Національний антарктичний науковий центр МОН України
Український антарктичний журнал
Геолого-геофізичні дослідження
Monitoring of glacier frontal parts on Galindez and Winter Islands (the Argentine Islands) in 2018—2019 years
Моніторинг виходів льодовиків островів Галіндез та Вінтер (Аргентинські острови) у 2018—2019 роках
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Monitoring of glacier frontal parts on Galindez and Winter Islands (the Argentine Islands) in 2018—2019 years
spellingShingle Monitoring of glacier frontal parts on Galindez and Winter Islands (the Argentine Islands) in 2018—2019 years
Marusazh, Kh.I.
Hlotov, V.M.
Siejka, Z.
Геолого-геофізичні дослідження
title_short Monitoring of glacier frontal parts on Galindez and Winter Islands (the Argentine Islands) in 2018—2019 years
title_full Monitoring of glacier frontal parts on Galindez and Winter Islands (the Argentine Islands) in 2018—2019 years
title_fullStr Monitoring of glacier frontal parts on Galindez and Winter Islands (the Argentine Islands) in 2018—2019 years
title_full_unstemmed Monitoring of glacier frontal parts on Galindez and Winter Islands (the Argentine Islands) in 2018—2019 years
title_sort monitoring of glacier frontal parts on galindez and winter islands (the argentine islands) in 2018—2019 years
author Marusazh, Kh.I.
Hlotov, V.M.
Siejka, Z.
author_facet Marusazh, Kh.I.
Hlotov, V.M.
Siejka, Z.
topic Геолого-геофізичні дослідження
topic_facet Геолого-геофізичні дослідження
publishDate 2019
language English
container_title Український антарктичний журнал
publisher Національний антарктичний науковий центр МОН України
format Article
title_alt Моніторинг виходів льодовиків островів Галіндез та Вінтер (Аргентинські острови) у 2018—2019 роках
description The work presents an analysis of climate variability and glaciological changes of the Antarctic Peninsula and the results of glacier monitoring on Galindez Island and Winter Island (the Argentine Islands in the Wilhelm Archipelago, Antarctic Peninsula) in 2018—2019. The main objective of research was to determine how the volumes of glaciers changed in 2018—2019 in the course of a complex study. У статті представлено аналіз кліматичних та гляціологічних змін Антарктичного півострова та результати моніторингу льодовиків на островах Галіндез та Вінтер (Аргентинські острови Архіпелагу Вільгельма, Антарктичний півострів) за період 2018—2019 рр. Метою роботи було визначення змін поверхневих об’ємів льодовиків на островах Галіндез та Вінтер за результатами комплексних досліджень за період 2018—2019 рр.
issn 1727-7485
url https://nasplib.isofts.kiev.ua/handle/123456789/168327
citation_txt Monitoring of glacier frontal parts on Galindez and Winter Islands (the Argentine Islands) in 2018—2019 years / Kh.I. Marusazh, V.M. Hlotov, Z. Siejka // Український антарктичний журнал. — 2019. — № 2 (19). — С. 26-37. — Бібліогр.: 33 назв. — англ.
work_keys_str_mv AT marusazhkhi monitoringofglacierfrontalpartsongalindezandwinterislandstheargentineislandsin20182019years
AT hlotovvm monitoringofglacierfrontalpartsongalindezandwinterislandstheargentineislandsin20182019years
AT siejkaz monitoringofglacierfrontalpartsongalindezandwinterislandstheargentineislandsin20182019years
AT marusazhkhi monítoringvihodívlʹodovikívostrovívgalíndeztavínterargentinsʹkíostroviu20182019rokah
AT hlotovvm monítoringvihodívlʹodovikívostrovívgalíndeztavínterargentinsʹkíostroviu20182019rokah
AT siejkaz monítoringvihodívlʹodovikívostrovívgalíndeztavínterargentinsʹkíostroviu20182019rokah
first_indexed 2025-11-24T11:38:45Z
last_indexed 2025-11-24T11:38:45Z
_version_ 1850845845798256640
fulltext 26 Cite: Marusazh Kh. I., Hlotov V. M., Siejka Z. Monitoring of glacier frontal parts on Galindez and Winter islands (the Argentine Is- lands) in 2018—2019. Ukrainian Antarctic Journal, 2019. № 2 (19), 26—37. UDC 528.06/528.72 Kh. I. Marusazh 1, 2, *, V. M. Hlotov 1, Z. Siejka 3 1 Institute of Geodesy, Lviv Polytechnic National University, 6 Karpinskogo Str., Lviv, 79013, Ukraine 2 State Institution National Antarctic Scientific Center, Ministry of Education and Science of Ukraine, 16 Taras Shevchenko Blvd., Kyiv, 01601, Ukraine 3 University of Agriculture in Krakow, Adam Mickiewicz Alley 21, 31—120, Krakow, Poland * Corresponding author: kh.marusazh@gmail.com Monitoring of glacier frontal parts on Galindez and Winter islands (the Argentine Islands) in 2018—2019 Abstract. The work presents an analysis of climate variability and glaciological changes of the Antarctic Peninsula and the results of glacier monitoring on Galindez Island and Winter Island (the Argentine Islands in the Wilhelm Archipelago, Antarctic Pen- insula) in 2018—2019. The main objective of research was to determine how the volumes of glaciers changed in 2018—2019 in the course of a complex study. Methods. The material of the Ukrainian seasonal expedition of 2018—2019 was used: terrestrial laser scanning data of 2018, terrestrial digital photography of 2018 and 2019 and an unmanned aerial vehicle survey of 2019. The technique used to determine changes in the volumes of glaciers can significantly improve both the speed and accuracy of the measurements. It included complementary processing of scanning data and digital photography of 2018, and digital photogra- phy and aerial survey of 2019. Results. Changes in the volumes of glaciers were 36 000 m3 for the western part of the glacier on Galindez Island, 1 100 m3 for the southern part of the glacier on Galindez Island, and 9 800 m3 for the southern part of the gla- cier on Winter Island. Conclusions. The results demonstrate significant changes since 2002. This is confirmed quantitatively by independent studies of the West of the peninsula. Monitoring of the dynamics of glacier volumes enables detection of climatic and glaciological changes in the Antarctic region. Keywords: glacier, terrestrial laser scanning, stereophotogrammetry. ISSN 1727-7485. Український антарктичний журнал. 2019, № 2 (19) INTRODUCTION The Antarctic ice cover is a complex natural system whose internal dynamics is sensitive to both atmos phe- ric and oceanic influences. A deeper understanding of the underlying processes may have a profound im- pact on the development of prognostic models. The volume of the Antarctic ice translates into the equivalent of 57.2 m of sea level. Annual snowfall con tributes 2100 Gt, except for shelf glaciers, which is equivalent to a 5.8 mm fluctuation of sea level (van Wessem et al., 2018). In a mass equilibrium state, snowfall accumulation should balance surface abla- tion and ice loss off the periphery into the Southern Ocean. However, the overall loss of the Antarctic gla- cier cover has increased from 40 ± 9 Gt/yr in 1979– 1990 to 50 ± 14 Gt/yr in 1989–2000 to 166 ± 18 Gt/ yr in 1999–2009 and then to 252 ± 26 Gt/yr in 2009– 2017 (Rignot et al., 2019). The average contribution of the Antarctic to sea level rise has been 3.6 ± 0.5 mm per decade with accumulation of 14.0 ± 2.0 mm since 1979, including 6.9 ± 0.6 mm from West Antarctica, 4.4 ± 0.9 mm from East Antarctica and 2.5 ± 0.4 mm from the Antarctic Peninsula (AP). The reason for such a global loss of the ice cover has been climate change. A significant change, or to be precise, significant warming, has been registered in the AP region. The late XX century was characte- 27ISSN 1727-7485. Український антарктичний журнал. 2019, № 2 (19) Monitoring of glacier frontal parts on Galindez and Winter islands (the Argentine Islands) in 2018—2019 rized by elevations in surface temperatures, melting of glaciers and increased snowfall (Thomas, Tetzner, 2018). The strongest trends toward climate warming are observed in the west and north of the Peninsula; the region exhibits the most drastic year-to-year vari- ation on the entire continent (Turner et al., 2014). Notably, the highest statistically significant trend of +0.54 °C per decade has been recorded at Akademik Vernadsky station (1951–2011). The progressive rise in air temperature is connect- ed with a sequence of glacial events on the AP in the 1990s (Silva et al., 2014), such as iceberg calving, frag- mentation of shelf glaciers (Kunz et al., 2012), al te- ra tions in the height of the snow line, collapse and mel- ting of shelf glaciers (Cook et al., 2005; Cook et al., 2014). The observed changes indicate that the AP ra pid ly reacts to climate change. Yet the changes are not uni- form across the region (Shepherd et al., 2012). The tendency towards the largest change is cha- racteristic of the north of the AP, then the west and the islands. In terms of area reduction, the most loss is seen in shelf glaciers. According to observations (Silva et al., 2020), 60% of the AP glaciers are shrink- ing, 25% are growing in size, and 7% are fluctuating. The melting of most glaciers confirms that the penin- sula loses more ice mass than it receives, so the pro- cess is unbalanced (Cook et al., 2014). The North-West region of the AP has undergone the most pronounced changes; 74% of glaciers there reduced in size in 2000—2015. Of the 94 glaciers, 69 lose frontal area and 80 are outlet glaciers, meaning that 85% are more sensitive to frontal change. Due to the gradual rise in air temperature, western AP underwent the most dramatic change in the height of dry snow line between 1995 and 2005. Studies ana- lyzing 244 glaciers on the western coast of the AP showed that between 1945 and 2004, approximately 87% reduced in size (Cook et al., 2005). In general, the model is consistent with melting due to gradual warming of the atmosphere, but its speed suggests the process is not the only factor of the deglaciation. Despite the tendencies toward regional warming in the west of the AP at the end of the XX century, the mean annual temperature decreased during 1999–2014 at a statistically significant rate (<5%) (Turner et al., 2016). The trend toward smaller increases in temperature (Fig. 1) has also been recorded at Akademik Vernad- sky station (2000–2019) (according to Antarctic Me- teorology Online from the British Antarctic Survey). One hypothesis is that the rapid warming after the 1950s and further reduction in temperature increases af- ter late 1990s are not connected with global changes in temperature but reflect a large-scale natural variation in the regional atmosphere circulation. This underscores the need for longer observations of temperatures and other meteorological parameters in order to evaluate regional climate variability (Sobota et al., 2015). Climate change might cause loss of ice mass lead- ing to a rise in sea level. In order to isolate this factor, short-scale fluctuations in snow accumulation are ta- ken into account while measuring the thickness of ice cover (Shepherd et al., 2019). Researchers note that the strongest trend toward accumulation of the snow cover is seen at the AP (Thomas et al., 2017). Increa- sed snow cover complicates remote sensing studies. Therefore, field measurements are required to verify the results (Wang et al., 2017). So, as it can be seen, monitoring of glaciers is very im- portant and reveals the need for long-term observations to establish patterns of changes in the volume of glaciers for assessing the variability of the regional climate. MATERIALS AND METHODS Terrestrial digital photography (TDP) and terrestrial laser scanning (TLS) are used for monitoring of is- Fig. 1. Average annual temperatures on Akademik Vernadsky station for 2000—2019 2000 0 –1 –2 –3 –4 –5 2005 2010 2015 2020 A ve ra g e a n n u a l te m p e ra tu re s, ° С 28 ISSN 1727-7485. Ukrainian Antarctic Journal. 2019, № 2 (19) Kh. I. Marusazh, V. M. Hlotov, Z. Siejka land glaciers and their frontal parts. A technique based on the use of digital stereophotogrammetric photogra- phy and terrestrial laser scanning is proposed. The use of a complementary methodology can significantly in- crease the speed of measurements of glacier surfaces and the accuracy of quantitative parameters of the ob- jects of study. The general layout is given in Fig. 2. Another approach to observation of melting glaciers is to apply current means of remote surveys, such as images taken by unmanned aerial vehicles (UAV). In view of this, the complex method has been modified for the use of ter- restrial digital stereophotogrammetric and UAV survey. The data were collected by season expeditions of 2018—2019; TLS was done in 2018, TDP in 2018 and Fig. 2. Technological scheme of the complex method DETERMINATION OF SURFACE VOLUME CHANGE Determination of surface volumes change Data analysis and post-processing Field measurements Creation of a Technical Project Determination of TLS parameters Planning the placement of scanner and reference targets (spheres) A prior estimate of TLS accuracy Determination of coordinates of the scanner and reference targets (spheres) Scan registration Scan filtration and edition Creation point models Determination of coordinates of bases and ground control points Distortion correction Image orientation Creation digital elevation models Co-alignment of TLS and TDP models Creation of TIN models Calculation of volumes relative to the reference plane Calculation of the differences between observation cycles Graphical representation of changes in surface volumes Measurement of coordinates of the scanner and reference targets (spheres) Terrestrial laser scanning Measurement of coordinates of bases and ground control points Terrestrial digital photography Determination of TDP parameters Planning the placement of bases and ground control points A prior estimate of TDP accuracy 29ISSN 1727-7485. Український антарктичний журнал. 2019, № 2 (19) Monitoring of glacier frontal parts on Galindez and Winter islands (the Argentine Islands) in 2018—2019 Fig. 3.1. Overall view of the western side of the glacier on Galindez Island in April, 2018 Fig. 3.2. Overall view of the western side of the glacier on Galindez Island in April, 2019 Fig. 3.3. Overall view of the southern side of the glacier on Galindez Island in April, 2018 Fig. 3.4. Overall view of the southern side of the glacier on Galindez Island in April, 2019 30 ISSN 1727-7485. Ukrainian Antarctic Journal. 2019, № 2 (19) Kh. I. Marusazh, V. M. Hlotov, Z. Siejka 2019 (Fig. 3) and UAV survey in 2019. For terrestrial laser scanning we used Faro Focus 3D S 120 scanner (FARO Laser Scanner Focus 3D, 2010). Terrestrial digital photography was done using digital cameras Canon EOS 450D and Canon EOS Mark III D. The focal distances used to take the images were 16 mm, 18 mm, 35 mm and 55 mm. Cases of surveying: nor- mal and convergent. For the UAV survey, we used Trimble UX5 (Trimble UX5 HP Unmanned Aircraft System) with Canon EOS Mark III D camera. Digital terrestrial photography data processing. The images are processed using digital photogrammetric stations (DPS). Preference should be given to DPS in which the mathematical solution of photogrammet- ric problems allows the researcher to realize the ac- curacy potential of a digital image, regardless of the projection, focal distance, and exterior orientation elements. The software should allow maximum auto- mation of the image orientation, creation of the photo- grammetric model and recovery of the digital informa- tion about the territory. The cameral processing of the obtained digital survey materials was performed at the Delta-2 digital photogrammetric sta tion using the Digitals software (Delta/Digitals, GeoSystem). The procedure includes preparatory steps, prelimi- nary processing of the input data, image orientation and creation of a digital elevation model (DEM). GML C++ Camera Calibration Toolbox (GML C++ Camera Calibration Toolbox, Graphics and Me dia Lab) software was used to account for distortions in the images. The images obtained after removal of distortions at known coordinates of the projection centers of the ima- ges are oriented with the application Models.exe in “Gro- und photography” and “Two single images” modes. In order to create the DEM, regular grid interval and grid node density have been calculated (Tretyak et al., 2016). The UAV pictures were treated using Pix4Dmap- per (Pix4Dmapper, Pix4D). Terrestrial laser scanning data. The preparation in- cluded data processing, estimation of the accuracy of the exterior scan orientation and 3D modeling. Fig. 3.5. Overall view of the southern side of the glacier on Winter Island in April, 2018 Fig. 3.6. Overall view of the southern side of the glacier on Winter Island in April, 2019 31ISSN 1727-7485. Український антарктичний журнал. 2019, № 2 (19) Monitoring of glacier frontal parts on Galindez and Winter islands (the Argentine Islands) in 2018—2019 Preliminary data processing was done using soft- ware developed for the company’s laser scanner Faro Scene (Faro Scene Software, Faro). Low reflectance surfaces can be a source of high noise, and their surface points may contain incorrect coordinates. Such points are therefore recommended for removal. The FARO SCENE software has several types of filters to delete the most dubious data de- pending on the choice of settings. After filtering, glacier scans were combined into a Fig. 4.1. Point model of the western part of the glacier on Galindez Island in 2018 Fig. 4.2. Point model of the southern part of the glacier on Galindez Island in 2018 Fig. 4.3. Point model of the southern part of the glacier on Winter Island in 2018 32 ISSN 1727-7485. Ukrainian Antarctic Journal. 2019, № 2 (19) Kh. I. Marusazh, V. M. Hlotov, Z. Siejka single point model (Seredovych et al., 2009) using automatic recognition of reference targets with sub- sequent editing and verification of the accuracy of the models. As a result, the minimum error for scan alignment for the glacier on Galindez Island was 0.46 mm and the maximum one was 10.13 mm; for the glacier on Winter Island, the range was 0.75 to 6.48 mm. In order to correlate point models with the World Geodetic System (WGS84), it is necessary to mark Fig. 5.3. Point model of the southern part of the glacier on Winter Island in 2019 Fig. 5.1. Point model of the western part of the glacier on Galindez Island in 2019 Fig. 5.2. Point model of the southern part of the glacier on Galindez Island in 2019 33ISSN 1727-7485. Український антарктичний журнал. 2019, № 2 (19) Monitoring of glacier frontal parts on Galindez and Winter islands (the Argentine Islands) in 2018—2019 the reference targets on the models in accordance with the field sketch and to set their coordinates ob- tained from satellite observations. Creation of point models. After filtering out dubious measurements and noise, points not belonging to the glacier’s surface were also removed from the point cloud. The resulting 3D model was assigned textures obtained by laser scanning. Based on the combined processing of TLS and TDP material in April, 2018 point models of glacier frontal parts on Winter and Galindez islands were created (Fig. 4). Based on TDP and UAV imaging in April, 2019, DEM of glaciers’ frontal parts were cre- ated (Fig. 5). Calculations of changes in surface volumes. The changes in glacier surface volumes were calculated using the Cyclone software (Leica Cyclone, Leica Geosystems). Triangulated irregular network (TIN) models were created based on the combined models of 2018— 2019. They were visually verified and edited when necessary. In order to determine volume changes, a rectan- gular prism method is proposed. This choice is ex- plained by the fact that it allows to calculate the vol- ume of an object relative to a certain reference plane (hereinafter – the plane). The method is included in many software packages allowing volume compu- tation. The rectangular prism method calculates the total volume as a sum of separate prism volumes (Yanalak, 2005): 0* mV F h h= − , (1) where 1 ( * ) 4* n i i i m g h h n == ∑ , (2) i – quadrangle’s number; h m – mean height; F – area of the whole object; g i – number of vertices of the adjacent triangles; h i – vertex height; n – number of all quadrangles; h 0 – height of the reference plane. In order to compute the changes in surface vo- lumes, we built a precisely vertical reference plane, which was constant for all observation cycles. The changes in volumes relative to the plane were first calculated, and then the differences between the se- quential cycles, i.e. the changes in glaciers’ volumes, were found. RESULTS AND DISCUSSION The changes on surface volumes were determined ba- sed on the data obtained by TLS (2018), TDP (2018 and 2019) and UAV imaging (2019) of the western and southern frontal parts of the Galindez glacier and the southern outlet of the Winter glacier (Table). In order to compare the changes in surface volumes Table. Changes (reduction) in surface volumes of island glaciers Glacier on Galindez Island, western part Glacier on Galindez Island, southern part Glacier on Winter Island, southern part Time period Volume change (m3) Time period Volume change (m3) Time period Volume change (m3) 2002—2003 23 000 2002—2003 1 500 2002—2003 — 2003—2004 28 000 2003—2004 350 2003—2004 1 250 2004—2005 17 000 2004—2005 4 800 2004—2005 4 800 2005—2013 64 000 2005—2013 94 000 2005—2013 82 000 2013—2014 16 000 2013—2014 500 2013—2014 1 400 2014—2018 1 200 2014—2018 600 2014—2018 800 2018—2019 36 000 2018—2019 1 100 2018—2019 9 800 34 ISSN 1727-7485. Ukrainian Antarctic Journal. 2019, № 2 (19) Kh. I. Marusazh, V. M. Hlotov, Z. Siejka we provide the results of previous studies of the gla- ciers (Tretyak et al., 2016) started in 2002. All obser- vations were made in March or April. However, all the relevant seasonal Antarctic observations were in- terrupted from 2005 to 2013, and then from 2014 to 2018, which is why the observation cycles are not constant. According to Cisak et al. (2008), in 2000—2005 the glacier on the Galindez Island lost overall 2—3% of its volume, which is 20 000 m3/year, on average. Ac- cording to Tretyak et al. (2016), on average, the Ga- lindez glacier shrinks at 12 000 m3/year (western part) and 9 150 m3/year (southern part), and the southern part of the glacier on the Winter Island shrinks at 8 800 m3/year. By the data for 2014—2019, the volumes of glaciers have decreased, but not uniformly. As already men- tioned, the thickness of the snow layer can have an impact on the apparent volume, obscuring the actual change. The 2018 survey was held after a snowfall, which might have resulted in minor changes in the surface volumes relative to the period of 2014—2018, and changes in 2018—2019 could have been underes- timated. A negative factor complicating the interpre- tation of the results is the non-regularity of monitor- ing (long intervals between observation cycles). Comparison of the changes in frontal parts of gla- ciers on Galindez and Winter islands with the calcu- lations for ice volumes on the overall glacier surface (Karušs et al., 2019) leads to the conclusion that in 2014—2019, the glacier on Galindez Island lost over- all approximately 2.5% of volume, and the one on Winter Island – approximately 1.5%. The general trend to melting of the Antarctic Pen- insula glaciers can be observed in other contempo- rary publications. Confirmation that AP responds quickly to climate change is presented in (Silva et al., 2020), whereby the authors characterize glaciers on the islands of the Antarctic Peninsula as melting, with the reported loss of 279 km2 during 2001—2015. For example, the glaciers on King George Island we- re reduced by 9.41 km2 (Rosa et al., 2015); on the Shetland Islands, 61% of glaciers are shrinking (Os- manoğlu et al., 2014). The studies of 1956—2004 (Hlotov et al., 2004) suggest that the Galindez glacier is also much reduced. According to (Chernov et al., 2018), the maximum ice thickness found at the ice dome of the Galindez glacier is 35 m, compared to 59 m measured by radiolocation in 1998 (Bakhmutov et al., 2006) and 45—48 m in 2004 (Levashov et al., 2004). Analyzing temperature changes (Fig. 1) and volu- mes of the glaciers (Table) on Galindez and Winter islands one should note the correlation between the two parameters. The warming at the Antarctic Penin- sula influences the decrease in albedo (Turner et al., 2016). Therefore it is necessary to factor in not only the temperature but also the precipitation, sea ice, change in sea level and other parameters. In order to record the changes in glacier volumes in a timely manner and to establish the regularities governing the regional climate variation, it is impor- tant to continue annual monitoring. Additionally, one should take into account the thickness of the snow cover. CONCLUSIONS According to the literature review, glaciological pa- rameters of the Antarctic Peninsula are spatially highly diverse and changing in a variety of ways. The largest changes are observed in the northern and western parts of the peninsula and islands. For the western region of the Antarctic Peninsula, after the warming seen in the late XX century there is seen a reduction in incremental temperature increase. A similar trend is recorded at the Akademik Vernadsky station. Most probably, the changes reflect internal natural variability. However, longer observations of temperature and other meteorological parameters are necessary. To monitor the frontal parts of the glaciers on the Galindez and Winter islands in 2018—2019 we em- ployed a method based on digital stereophotogram- metrical photography and terrestrial laser scanning. Modified and tested for the first time a method for determining the surface volumes of island glaciers by co-aligning digital stereophotogrammetric imaging and UAV photography. Using complex methods al- lows to significantly increase the speed of measure- 35ISSN 1727-7485. Український антарктичний журнал. 2019, № 2 (19) Monitoring of glacier frontal parts on Galindez and Winter islands (the Argentine Islands) in 2018—2019 ment of the glacier surface and the accuracy of the quantitative parameters of the research. Based on the results of terrestrial laser scanning in 2018, digital photography in 2018 and 2019 and UAV photography in 2019, we estimated the loss of surface volumes, totaling 36 000 m3 for the frontal part of the western side of the Galindez glacier, 1 100 m3 for the frontal part of the southern side of the Galindez gla- cier, and 9 800 m3 for the frontal part of the southern side of the Winter glacier. Overall, in 2014—2019 the glacier on Galindez lost about 2.5% of its volume, and the one on Winter — about 1.5% The presented results of monitoring suggest a non- uniform character of changes in the glaciers, since the western part of the glacier on Galindez shrinks faster than southern parts of both glaciers. Two nega- tive factors complicating evaluation of the results are the thickness of snow cover and non-regularity of monitoring (and long time periods between observa- tions). Analyzing changes in the temperature and the vol- umes of glaciers on Galindez and Winter islands, one should note the correlation of the parameters. The warming in the region of the Antarctic Peninsula in- fluences the shrinking of the glacier through the feed- back between ice/snow cover and albedo. Melting of glaciers on Galindez and Winter islands has been reported in other contemporary studies that addressed the Antarctic coastline. Further monitoring of Antarctic coastal glaciers is important for timely detection of changes in them and in order to establish patterns for assessing the regional climate variability. It is planned, additionally, to factor in the thickness of snow cover and to study not only the impact of temperature, but also precipitation, sea ice, change in sea level and other parameters. The study was conducted as part of the research project “A study of changes in the surface volumes of island and continental glaciers based on the results of digital images, laser scanning and geodetic measure- ments made during the season works of the 24th Uk- rainian Antarctic Expedition of 2019—2020” under a contract with the State Institution National Antarc- tic Scientific Center of Ministry of Education and Science of Ukraine. REFERENCES Antarctic Meteorology Online from the British Antarctic Sur- vey. https://legacy.bas.ac.uk/met/READER/surface/ (last acce- ssed: 19 November 2019). Bakhmutov, V. G., Vashchenko, V. N., Grishchenko, V. F., Korchagin, I. N., Levashov, S.V., Pishchanyi I. N. 2006. Me- tody i rezul’taty izmerenij moshhnosti lednikov Malyj Uig- gjens (Antarkticheskij poluostrov) i Domashnij (ostrov Galin- dez) [Methods and results of glaciers’ Malyi Wiggins (the Antarctic penninsula) and Domashnii (Galindez Island) thik- ness measurements]. Ukraїns’kij antarktichnij zhurnal [Ukrai- nian Antarctic Journal], 4—5, 47—51. Cisak, J., Milinevsky, G., Danylevsky, V., Glotov, V., Chi- zhevsky, V., Kovalenok, S., Olijnyk, A., Zanimonskiy, Y. 2008. Atmospheric impact on GNSS observations, sea level change investigations and GPS-photogrammetry ice cap survey at Vernadsky Station in Antarctic Peninsula. In CAPRA, A. and DIETRICH, R., eds. Geodetic and geophysical observations in Antarctica. Berlin: Springer, 191–209. Chernov, A., Lamsters, K., Karušs, J., Krievāns, M., Ot ru- ba, Y. 2018. A Brief Review of Ground Penetrating Radar In- vestigation Results of Ice Caps on Galindez, Winter and Skua Islands (Wilhelm Archipelago, Antarctica) for the Period April 2017 – January 2019. Ukrainian Antarctic Journal, 1 (17), 40—47. http://uaj.uac.gov.ua/index.php/uaj/article/view/30 (last accessed: 19 November 2019). Cook, A. J., Fox, A. J., Vaughan, D. G., Ferrigno, J. G. 2005. Retreating glacier fronts on the Antarctic Peninsula over the past half-century. Science, 308(5721), 541—544. https:// science.sciencemag.org/content/308/5721/541 (last acce ssed: 19 No vember 2019). Cook, A. J., Vaughan, D. G., Luckman, A. J., Murray, T. 2014. A new Antarctic Peninsula glacier basin inventory and observed area changes since the 1940s. Antarctic Science, 26 (6), 614—624. https://www.cambridge.org/core/journals/ antarctic-science/article/new-antarctic-peninsula-glacier- basin-inventory-and-observed-area-changes-since-the- 1940s/7FC ABBCABE30589E457B3C89D9A00A98 (last ac- cessed: 19 November 2019). Delta/Digitals. URL: http://www.vinmap.net/ (last acce s- sed: 19 November 2019). FARO Laser Scanner Focus 3D, 2010. URL: http://www.faro. in.ua/focus%20S120.html. (last accessed: 19 November 2019). Faro Scene Software. URL: https://www.faro.com/products/ construction-bim/faro-scene/ (last accessed: 19 Novem ber 2019). GML C++ Camera Calibration Toolbox. URL: https:// graphics.cs.msu.ru/ru/research/projects/3dreconstruction/ cppcalibration (last accessed: 19 November 2019). Hlotov, V. В., Kovalionok, S. Chyzhevskyj, V. 2004. Kil kisni parametry ostrivnyh liodovykiv za rezultatamy cyfrovogo ste- reofotogrammetrychnogo znimannja [Numerical parameters of Island glaciers obtained using digital stereophotogram- 36 ISSN 1727-7485. Ukrainian Antarctic Journal. 2019, № 2 (19) Kh. I. Marusazh, V. M. Hlotov, Z. Siejka metry]. Ukrainskyj antarktychnyj zhurnal [Ukrainian Antarctic Journal], 2, 58–65. URL: http://dspace.nbuv.gov.ua/handle/ 123456789/128149 (last accessed: 19 November 2019). Karušs, J., Lamsters, K., Chernov, A., Krievāns, M., Ješ- kins, Ju. 2019. Subglacial topography and thickness of ice caps on the Argentine Islands. Antarctic Science, 31 (6), 332— 344. https://doi.org/10.1017/S0954102019000452. Kunz, M., King, M. A., Mills, J. P., Miller, P. E., Fox, A. J., Vaughan, D. G., Marsh, S. H. 2012. Multi-decadal glacier surface lowering in the Antarctic Peninsula. Geophysical Research Letters, 39 (19). https://doi:10.1029/2012GL052823, 2012. Levashov, S.P, Yakymchuk, N.A., Usenko, V.P., Korcha- gin, I.N., Solovyov, V.D., Pishchany, Y.M. 2004. Determina- tion of the Galindez Island ice cap thickness by the vertical electric-resonance sounding method. Ukrainian Antarctic Journal, 2, 38—43. Osmanoğlu, B., Navarro Valero, F. J., Hock, R., Braun, M., Corcuera Labrado, M. I. 2014. Surface velocity and mass balance of Livingston Island ice cap, Antarctica. The Cryo- sphere, 8 (5), 1807—1823. https://www.the-cryosphere.net/ 8/1807/2014/ (last accessed: 19 November 2019). Pix4Dmapper. URL: pix4d.com/product/pix4dmapper- pho togrammetry-software (last accessed: 19 November 2019). Rignot, E., Mouginot, J., Scheuchl, B., van den Broeke, M., van Wessem, M. J., Morlighem, M. 2019. Four decades of Antarctic Ice Sheet mass balance from 1979–2017. Proceed- ings of the National Academy of Sciences, 116 (4), 1095—1103. https://www.pnas.org/content/116/4/1095 (last acce ssed: 19 November 2019). Rosa, K.K., Vieira, R., Fernandez, G., Mendes, C.W., Vel ho, L.F., Simões, J.C. 2015. Recent changes in the Wanda Glacier, King George Island, Antarctica. Pesquisas em Geociên- cias, 42 (2), 187—196. https://doi.org/10.22456/1807-9806.78119. Seredovych, V. A., Komyssarov, A. V., Komyssarov, D. V., Shyrokova, T. A. 2009. Nazemnoe lazernoe skanyrovanye [Ter- restrial laser scanning]. 261. Shepherd, A., Ivins, E.R., Geruo, A, Barletta, V.R., Bent- ley, M.J., Bettadpur, S., Briggs, K.H., Bromwich, D.H., Fors- berg, R., Galin, N., Horwath, M., Jacobs, S., Joughin, I., King, M.A., Lenaerts, J.T., Li, J., Ligtenberg, S.R., Luckman, A., Luthcke, S.B., McMillan, M., Meister, R., Milne, G., Mouginot, J., Muir, A., Nicolas, J.P., Paden, J., Payne, A.J., Pritchard, H., Rignot, E., Rott, H., Sørensen, L.S., Scambos, T.A., Scheuchl, B., Schrama, E.J., Smith, B., Sundal, A.V., van Angelen, J.H., van de Berg, W.J., van den Broeke, M.R., Vaughan, D.G., Velicogna, I., Wahr, J., Whitehouse, P.L., Wingham, D.J., Yi, D., Young, D., Zwally, H.J. 2012. A re- conciled estimate of ice-sheet mass balance. Science, 338 (6111), 1183—1189. https://science.sciencemag.org/content/ 338/61 11/1183 (last accessed: 19 November 2019). Shepherd, A., L. Gilbert, A.S. Muir, H. Konrad, M. Mc- Millan, T. Slater, K.H. Briggs, A.V. Sundal, A.E. Hogg, M. Engdahl. 2019. Trends in Antarctic Ice Sheet elevation and mass. Geophysical Research Letters, 46, 8174—8183. https:// doi.org/10.1029/2019GL082182. Silva, A. B., Arigony-Neto, J., Braun, M., de Almeida Es- pinoza, J. M., Costi, J., Janã, R. 2020. Spatial and temporal analysis of changes in the glaciers of the Antarctic Penin su- la. Global and Planetary Change, 184, 103079. https://www. sciencedirect.com/science/article/pii/S0921818119305648 (last accessed: 19 November 2019). Silva, A. B., Neto, J. A., Júnior, C. W. M., Lemos, A. G. 2014. Variations in surface velocities of tidewater glaciers of the Antarctic peninsula between the periods 1988—1991 and 2000-2003. Brazilian Journal of Geophysics, 32 (1), 49—60. https://sbgf.org.br/revista/index.php/rbgf/article/view/422/0 (last accessed: 19 November 2019). Sobota, I., Kejna, M., Araźny, A. 2015. Short-term mass changes and retreat of the Ecology and Sphinx glacier system, King George Island, Antarctic Peninsula. Antarctic Science, 27 (5), 500—510. https://doi.org/10.1017/S0954102015000188. Thomas, E. R., Melchior Van Wessem, J., Roberts, J., Isaksson, E., Schlosser, E., Fudge, T. J., Vallelonga, P., Med- ley, B., Lenaerts, J., Bertler, N., van den Broeke, M. R., Dix- on, D. A., Frezzotti, M., Stenni, B., Curran, M., Ekaykin, A. A. 2017. Regional Antarctic snow accumulation over the past 1000 years. Climate of the Past, 13 (11), 1491—1513. https:// doi.org/10.5194/cp-13-1491-2017. Thomas, E., Tetzner, D. 2018. The Climate of the Antarc- tic Peninsula during the Twentieth Century: Evidence from Ice Cores, Antarctica — A Key To Global Change, Masaki Ka- nao, Genti Toyokuni and Masa-yuki Yamamoto. IntechOpen, https://doi.org/10.5772/intechopen.81507. Tretyak, K., Hlotov, V., Holubinka, Y., Marusazh, K. 2016. Complex geodetic research in Ukrainian Antarctic station “Academician Vernadsky” (years 2002—2005, 2013—2014). Reports on Geodesy and Geoinformatics, 100 (1), 149—163. https://doi.org/10.1515/rgg-2016-0012. Trimble UX5 HP Unmanned Aircraft System. URL: http:// www.kmcgeo.com/Datasheets/UX5HP.pdf (last acce ssed: 19 November 2019). Turner, J., Barrand, N., Bracegirdle, T., Convey, P., Hodg- son, D. A., Jarvis, M., Jenkins, A., Marshall, G., Meredith, M. P., Roscoe, H., Shanklin, J., French, J., Goosse, H., Gug- lielmin, M., Gutt, J., Jacobs, S., Kennicutt, M. C., Masson- Delmotte, V., Mayewski, P., Navarro, F., Robinson, S. A., Scambos, T., Sparrow, M., Summerhayes, C., Speer, K. Klepikov, A. 2014. Antarctic climate change and the environ- ment: an update. Polar Record, 50 (3), 237—259. http:// dx.doi.org/10.1017/S0032247413000296. Turner, J., Lu, H., White, I., King, J. C., Phillips, T., Hosk- ing, J. S., Bracegirdle, T.J., Marshall, G.J., Mulvaney, R., Deb, P. 2016. Absence of 21st century warming on Antarctic Penin- sula consistent with natural variability. Nature, 535 (7612), 411—415. https://www.nature.com/articles/nature18645 (last accessed: 19 November 2019). 37ISSN 1727-7485. Український антарктичний журнал. 2019, № 2 (19) Monitoring of glacier frontal parts on Galindez and Winter islands (the Argentine Islands) in 2018—2019 van Wessem, J. M., van de Berg, W. J., Noël, B. P. Y., van Meijgaard, E., Amory, C., Birnbaum, G., Jakobs, C. L., Krüger, K., Lenaerts, J. T. M., Lhermitte, S., Ligtenberg, S. R. M., Medley, B., Reijmer, C. H., van Tricht, K., Trusel, L. D., van Ulft, L. H., Wouters, B., Wuite, J., van den Broeke, M. R. 2018. Modelling the climate and surface mass balance of polar ice sheets using RACMO2 — Part 2: Antarctica (1979–2016). The Cryosphere, 12, 1479—1498. https://doi.org/ 10.5194/tc-12-1479-2018. Wang, Y., Thomas, E. R., Hou, S., Huai, B., Wu, S., Sun, W., Qi, S., Ding, M., Zhang, Y. 2017. Snow accumulation variability over the West Antarctic Ice Sheet since 1900: A com parison of ice core records with ERA-20C reanalysis. Geo physical Research Letters, 44 (22), 11482—11490. https:// doi.org/10.1002/2017GL075135. Yanalak, M. 2005. Computing pit excavation volume. Jo ur- nal of surveying engineering, 131 (1), 15—19. https://doi.org/ 10.1061/(ASCE)0733-9453(2005)131:1(15). Received 21 November 2019 Accepted 23 December 2019 Х. І. Марусаж 1, 2, *, В. М. Глотов 1, З. Сєйка 3 1 Інститут геодезії, Національний університет «Львівська політехніка», вул. Карпінського 6, Львів, 79013, Україна 2 Державна установа Національний антарктичний науковий центр МОН України, бульв. Тараса Шевченка, 16, м. Київ, 01601, Україна 3 Аграрний університет, алея Адама Міцкевича 21, 31—120, Краків, Польща * Автор для кореспонденції: kh.marusazh@gmail.com Моніторинг виходів льодовиків островів Галіндез та Вінтер (Аргентинські острови) у 2018—2019 роках Реферат. У статті представлено аналіз кліматичних та гляціологічних змін Антарктичного півострова та результати моніторингу льодовиків на островах Галіндез та Вінтер (Аргентинські острови Архіпелагу Вільгельма, Антарктичний півострів) за період 2018—2019 рр. Метою роботи було визначення змін поверхневих об’ємів льодовиків на островах Галіндез та Вінтер за результатами комплексних досліджень за період 2018—2019 рр. Методи. Для дослідження вико- ристано матеріали українських сезонних антарктичних експедицій 2018—2019 років: дані наземного лазерного скану- вання за 2018 р., наземного цифрового знімання 2018 та 2019 р. та знімання з безпілотного літального апарату 2019 р. Зміни поверхневих об’ємів виходів льодовиків на островах Галіндез та Вінтер визначено з застосуванням методики комплексних досліджень, що дає змогу істотно підвищити швидкість виконання вимірювань поверхонь льодовиків та точність отриманих результатів. Методика базується на сумісному опрацюванні матеріалів наземного лазерного сканування та наземного цифрового знімання у 2018 році, наземного цифрового знімання та знімання з безпілотного літального апарату у 2019 році. Результати. Визначено зміни поверхневих об’ємів виходів льодовиків за період 2018— 2019 рр., що становлять: 36000 м3 – для західної частини льодовика на о. Галіндез, 1100 м3 – для південної частини льодовика на о. Галіндез та 9800 м3 – для південної частини льодовика на о. Вінтер. Висновки. Аналіз отриманих ре- зультатів показує кардинальні зміни, які спостерігаються з 2002 року. Це підтверджується кількісними параметрами, визначеними незалежними методами, та сучасними дослідженнями західної частини Антарктичного півострова. Спостереження за динамікою змін поверхневих об’ємів острівних льодовиків дасть змогу виявляти кліматичні та гляціологічні зміни, що відбуваються у Антарктичному регіоні. Ключові слова: льодовик, наземне лазерне сканування, цифрове стереофотограмметричне знімання. << /ASCII85EncodePages false /AllowTransparency false /AutoPositionEPSFiles true /AutoRotatePages /None /Binding /Left /CalGrayProfile (Dot Gain 20%) /CalRGBProfile (sRGB IEC61966-2.1) /CalCMYKProfile (Uncoated FOGRA29 \050ISO 12647-2:2004\051) /sRGBProfile (sRGB IEC61966-2.1) /CannotEmbedFontPolicy /Error /CompatibilityLevel 1.4 /CompressObjects /Tags /CompressPages true /ConvertImagesToIndexed true /PassThroughJPEGImages true /CreateJobTicket false /DefaultRenderingIntent /Default /DetectBlends true /DetectCurves 0.0000 /ColorConversionStrategy /CMYK /DoThumbnails false /EmbedAllFonts true /EmbedOpenType false /ParseICCProfilesInComments true /EmbedJobOptions true /DSCReportingLevel 0 /EmitDSCWarnings false /EndPage -1 /ImageMemory 1048576 /LockDistillerParams false /MaxSubsetPct 100 /Optimize true /OPM 1 /ParseDSCComments true /ParseDSCCommentsForDocInfo true /PreserveCopyPage true /PreserveDICMYKValues true /PreserveEPSInfo true /PreserveFlatness true /PreserveHalftoneInfo false /PreserveOPIComments false /PreserveOverprintSettings true /StartPage 1 /SubsetFonts true /TransferFunctionInfo /Apply /UCRandBGInfo /Preserve /UsePrologue false /ColorSettingsFile () /AlwaysEmbed [ true ] /NeverEmbed [ true ] /AntiAliasColorImages false /CropColorImages true /ColorImageMinResolution 300 /ColorImageMinResolutionPolicy /OK /DownsampleColorImages true /ColorImageDownsampleType /Bicubic /ColorImageResolution 1200 /ColorImageDepth -1 /ColorImageMinDownsampleDepth 1 /ColorImageDownsampleThreshold 1.50000 /EncodeColorImages false /ColorImageFilter /DCTEncode /AutoFilterColorImages true /ColorImageAutoFilterStrategy /JPEG /ColorACSImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /ColorImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /JPEG2000ColorACSImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /JPEG2000ColorImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /AntiAliasGrayImages false /CropGrayImages true /GrayImageMinResolution 300 /GrayImageMinResolutionPolicy /OK /DownsampleGrayImages true /GrayImageDownsampleType /Bicubic /GrayImageResolution 1200 /GrayImageDepth -1 /GrayImageMinDownsampleDepth 2 /GrayImageDownsampleThreshold 1.50000 /EncodeGrayImages false /GrayImageFilter /DCTEncode /AutoFilterGrayImages true /GrayImageAutoFilterStrategy /JPEG /GrayACSImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /GrayImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /JPEG2000GrayACSImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /JPEG2000GrayImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /AntiAliasMonoImages false /CropMonoImages true /MonoImageMinResolution 1200 /MonoImageMinResolutionPolicy /OK /DownsampleMonoImages true /MonoImageDownsampleType /Bicubic /MonoImageResolution 1200 /MonoImageDepth -1 /MonoImageDownsampleThreshold 1.50000 /EncodeMonoImages false /MonoImageFilter /CCITTFaxEncode /MonoImageDict << /K -1 >> /AllowPSXObjects false /CheckCompliance [ /None ] /PDFX1aCheck false /PDFX3Check false /PDFXCompliantPDFOnly false /PDFXNoTrimBoxError true /PDFXTrimBoxToMediaBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXSetBleedBoxToMediaBox true /PDFXBleedBoxToTrimBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXOutputIntentProfile (None) /PDFXOutputConditionIdentifier () /PDFXOutputCondition () /PDFXRegistryName () /PDFXTrapped /False /CreateJDFFile false /Description << /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E> /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e> /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002> /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002> /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e> /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e> /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e> /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e> /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a> /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e> /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e> /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E> /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.) /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e> /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e> /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002> /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e> /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e> /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e> /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.) /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e> /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e> /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e> /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e> /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e> /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e> /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e> /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e> /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e> /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e> /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.) /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e> >> /Namespace [ (Adobe) (Common) (1.0) ] /OtherNamespaces [ << /AsReaderSpreads false /CropImagesToFrames true /ErrorControl /WarnAndContinue /FlattenerIgnoreSpreadOverrides false /IncludeGuidesGrids false /IncludeNonPrinting false /IncludeSlug false /Namespace [ (Adobe) (InDesign) (4.0) ] /OmitPlacedBitmaps false /OmitPlacedEPS false /OmitPlacedPDF false /SimulateOverprint /Legacy >> << /AddBleedMarks false /AddColorBars false /AddCropMarks false /AddPageInfo false /AddRegMarks false /ConvertColors /ConvertToCMYK /DestinationProfileName () /DestinationProfileSelector /DocumentCMYK /Downsample16BitImages true /FlattenerPreset << /PresetSelector /MediumResolution >> /FormElements false /GenerateStructure false /IncludeBookmarks false /IncludeHyperlinks false /IncludeInteractive false /IncludeLayers false /IncludeProfiles false /MultimediaHandling /UseObjectSettings /Namespace [ (Adobe) (CreativeSuite) (2.0) ] /PDFXOutputIntentProfileSelector /DocumentCMYK /PreserveEditing true /UntaggedCMYKHandling /LeaveUntagged /UntaggedRGBHandling /UseDocumentProfile /UseDocumentBleed false >> ] >> setdistillerparams << /HWResolution [2400 2400] /PageSize [612.000 792.000] >> setpagedevice