Методи побудови регресійних моделей на основі нечітких даних
Запропоновано метод побудови регресійних моделей для систем на основі нечітких правил у випадку, коли реакція систем представлена нечіткими даними. Розроблено алгоритм, який з прийнятною точністю будує адекватну кількість правил Такагі-Сугено регресійної моделі з використанням автоматичної стратегії...
Збережено в:
| Опубліковано в: : | Компьютерная математика |
|---|---|
| Дата: | 2015 |
| Автори: | , |
| Формат: | Стаття |
| Мова: | Ukrainian |
| Опубліковано: |
Інститут кібернетики ім. В.М. Глушкова НАН України
2015
|
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/168359 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Методи побудови регресійних моделей на основі нечітких даних / С.В. Єршов, Т.І. Лико // Компьютерная математика. — 2015. — № 1. — С. 43-49. — Бібліогр.: 7 назв. — укр. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Резюме: | Запропоновано метод побудови регресійних моделей для систем на основі нечітких правил у випадку, коли реакція систем представлена нечіткими даними. Розроблено алгоритм, який з прийнятною точністю будує адекватну кількість правил Такагі-Сугено регресійної моделі з використанням автоматичної стратегії на основі даних спостережень, що надходять. Побудовано процедуру, що використовується для знаходження максимальної схожості параметрів регресійних моделей, у випадку, коли модель залежить від параметрів у консеквентах нечітких правил.
Предложен метод построения регрессионных моделей для систем на основе нечетких правил, в ситуации, когда реакция систем представлена нечеткими данными. Разработан алгоритм, который с приемлемой точностью строит адекватное количество правил Такаги-Сугено регрессионной модели с использованием автоматической стратегии на основе поступающих данных наблюдений. Построена процедура, которая используется для нахождения максимального сходства параметров регрессионных моделей, в случае, когда модель зависит от параметров в консеквентах нечетких правил.
A method for construction of regression models for systems based on fuzzy rules in situation, when reaction of a system is presented by fuzzy data, is proposed. An algorithm, which builds an adequate amount of Takagi-Sugeno rules for regression model with a reasonable accuracy and uses an automated strategy based on incoming data of observations, is developed. A procedure used for finding the maximum parameter similarity of regression models when the model depends on parameters in consequents of fuzzy rules, is constructed.
|
|---|---|
| ISSN: | 2616-938Х |