Decomposition Algorithm for Optimization Placement Problems
The paper considers a placement problem of 2D convex objects in a rectangular domain of minimum area, that related to the field of Packing and Cutting problems. Our objects may be continuously translated and rotated. A nonlinear programming model of the problem is derived using the phi-function tech...
Saved in:
| Published in: | Математичне та комп'ютерне моделювання. Серія: Технічні науки |
|---|---|
| Date: | 2019 |
| Main Authors: | , |
| Format: | Article |
| Language: | Ukrainian |
| Published: |
Інститут кібернетики ім. В.М. Глушкова НАН України
2019
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/168582 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Decomposition Algorithm for Optimization Placement Problems / A. Pankratov, T. Romanova // Математичне та комп'ютерне моделювання. Серія: Технічні науки: зб. наук. пр. — Кам’янець-Подільський: Кам'янець-Подільськ. нац. ун-т, 2019. — Вип. 19. — С. 126-131. — Бібліогр.: 6 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Summary: | The paper considers a placement problem of 2D convex objects in a rectangular domain of minimum area, that related to the field of Packing and Cutting problems. Our objects may be continuously translated and rotated. A nonlinear programming model of the problem is derived using the phi-function technique. We develop an efficient decomposition algorithm to search for local optimal solutions for the placement problem. The algorithm reduces our problem to a sequence of nonlinear programming subproblems of considerably smaller dimension and a smaller number of nonlinear inequalities. The benefit of this approach is borne out by the computational results.
У статті розглядається задача розміщення двовимірних опуклих об'єктів у прямокутній області мінімальної площі, яка відноситься до класу задач упаковки і розкрою. Об'єкти, що розміщуються, можуть неперервно транслюватися і обертатися. Будується математична модель задачі розміщення у вигляді задачі нелінійного програмування з використанням методу phi-функцій. Для пошуку локально-оптимальних розв’язків пропонується ефективний алгоритм декомпозиції, який зводить вихідну задачу до послідовності підзадач нелінійного програмування значно меншою розмірності з меншим числом нелінійних нерівностей. Перевага цього підходу підтверджується результатами численних експериментів.
|
|---|---|
| ISSN: | 2308-5916 |