Dirichlet problem for Poisson equations in Jordan domains

We study the Dirichlet problem for the Poisson equations △u(z) = g(z) with g ∈ Lp, p > 1, and continuous boundary data φ : ∂D → ℝ in arbitrary Jordan domains D in ℂ and prove the existence of continuous solutions u of the problem. Мы изучаем задачу Дирихле для уравнений Пуассона △u(z) = g(z) с g...

Full description

Saved in:
Bibliographic Details
Published in:Праці Інституту прикладної математики і механіки НАН України
Date:2018
Main Authors: Gutlyanskii, V., Ryazanov, V., Yakubov, E.
Format: Article
Language:English
Published: Інститут прикладної математики і механіки НАН України 2018
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/169122
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Dirichlet problem for Poisson equations in Jordan domains / V. Gutlyanskii, V. Ryazanov, E. Yakubov // Праці Інституту прикладної математики і механіки НАН України. — Слов’янськ: ІПММ НАН України, 2018. — Т. 32. — С. 30-41. — Бібліогр.: 27 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-169122
record_format dspace
spelling Gutlyanskii, V.
Ryazanov, V.
Yakubov, E.
2020-06-06T11:48:29Z
2020-06-06T11:48:29Z
2018
Dirichlet problem for Poisson equations in Jordan domains / V. Gutlyanskii, V. Ryazanov, E. Yakubov // Праці Інституту прикладної математики і механіки НАН України. — Слов’янськ: ІПММ НАН України, 2018. — Т. 32. — С. 30-41. — Бібліогр.: 27 назв. — англ.
DOI: 10.37069/1683-4720-2018-32-4
1683-4720
MSC: Primary 30C62,31A05, 31A20, 31A25, 31B25, 35J61. Secondary 30E25, 31C05, 34M50, 35F45, 35Q15.
https://nasplib.isofts.kiev.ua/handle/123456789/169122
517.5
We study the Dirichlet problem for the Poisson equations △u(z) = g(z) with g ∈ Lp, p > 1, and continuous boundary data φ : ∂D → ℝ in arbitrary Jordan domains D in ℂ and prove the existence of continuous solutions u of the problem.
Мы изучаем задачу Дирихле для уравнений Пуассона △u(z) = g(z) с g ∈ Lp, p > 1, и непрерывными граничными данными φ : ∂D → ℝ в произвольных жордановых областях D ⊂ ℂ и доказываем существование непрерывных решений u этой задачи.
Ми вивчаємо задачу Дiрихле для рiвнянь Пуасона △u(z) = g(z) с g ∈ Lp, p > 1, та неперервними граничними даними φ : ∂D → ℝ в довiльних жорданових областях D ⊂ ℂ та доводимо iснування неперервних рiшень u цiєї задачi
en
Інститут прикладної математики і механіки НАН України
Праці Інституту прикладної математики і механіки НАН України
Dirichlet problem for Poisson equations in Jordan domains
Задача Дирихле для уравнений Пуассона в жордановых областях
Задача Дiрихле для рiвнянь Пуасона у жорданових областях
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Dirichlet problem for Poisson equations in Jordan domains
spellingShingle Dirichlet problem for Poisson equations in Jordan domains
Gutlyanskii, V.
Ryazanov, V.
Yakubov, E.
title_short Dirichlet problem for Poisson equations in Jordan domains
title_full Dirichlet problem for Poisson equations in Jordan domains
title_fullStr Dirichlet problem for Poisson equations in Jordan domains
title_full_unstemmed Dirichlet problem for Poisson equations in Jordan domains
title_sort dirichlet problem for poisson equations in jordan domains
author Gutlyanskii, V.
Ryazanov, V.
Yakubov, E.
author_facet Gutlyanskii, V.
Ryazanov, V.
Yakubov, E.
publishDate 2018
language English
container_title Праці Інституту прикладної математики і механіки НАН України
publisher Інститут прикладної математики і механіки НАН України
format Article
title_alt Задача Дирихле для уравнений Пуассона в жордановых областях
Задача Дiрихле для рiвнянь Пуасона у жорданових областях
description We study the Dirichlet problem for the Poisson equations △u(z) = g(z) with g ∈ Lp, p > 1, and continuous boundary data φ : ∂D → ℝ in arbitrary Jordan domains D in ℂ and prove the existence of continuous solutions u of the problem. Мы изучаем задачу Дирихле для уравнений Пуассона △u(z) = g(z) с g ∈ Lp, p > 1, и непрерывными граничными данными φ : ∂D → ℝ в произвольных жордановых областях D ⊂ ℂ и доказываем существование непрерывных решений u этой задачи. Ми вивчаємо задачу Дiрихле для рiвнянь Пуасона △u(z) = g(z) с g ∈ Lp, p > 1, та неперервними граничними даними φ : ∂D → ℝ в довiльних жорданових областях D ⊂ ℂ та доводимо iснування неперервних рiшень u цiєї задачi
isbn DOI: 10.37069/1683-4720-2018-32-4
issn 1683-4720
url https://nasplib.isofts.kiev.ua/handle/123456789/169122
citation_txt Dirichlet problem for Poisson equations in Jordan domains / V. Gutlyanskii, V. Ryazanov, E. Yakubov // Праці Інституту прикладної математики і механіки НАН України. — Слов’янськ: ІПММ НАН України, 2018. — Т. 32. — С. 30-41. — Бібліогр.: 27 назв. — англ.
work_keys_str_mv AT gutlyanskiiv dirichletproblemforpoissonequationsinjordandomains
AT ryazanovv dirichletproblemforpoissonequationsinjordandomains
AT yakubove dirichletproblemforpoissonequationsinjordandomains
AT gutlyanskiiv zadačadirihledlâuravneniipuassonavžordanovyhoblastâh
AT ryazanovv zadačadirihledlâuravneniipuassonavžordanovyhoblastâh
AT yakubove zadačadirihledlâuravneniipuassonavžordanovyhoblastâh
AT gutlyanskiiv zadačadirihledlârivnânʹpuasonaužordanovihoblastâh
AT ryazanovv zadačadirihledlârivnânʹpuasonaužordanovihoblastâh
AT yakubove zadačadirihledlârivnânʹpuasonaužordanovihoblastâh
first_indexed 2025-11-26T13:28:23Z
last_indexed 2025-11-26T13:28:23Z
_version_ 1850624850562908160
fulltext ISSN 1683-4720 Працi IПММ НАН України. 2018. Том 32 UDC 517.5 DOI: 10.37069/1683-4720-2018-32-4 c⃝2018. V. Gutlyanskĭı, V. Ryazanov, E. Yakubov DIRICHLET PROBLEM FOR POISSON EQUATIONS IN JORDAN DOMAINS First, we study the Dirichlet problem for the Poisson equations △u(z) = g(z) with g ∈ Lp, p > 1, and continuous boundary data φ : ∂D → R in arbitrary Jordan domains D in C and prove the existence of continuous solutions u of the problem in the class W 2,p loc . Moreover, u ∈ W 1,q loc for some q > 2 and u is locally Hölder continuous. Furthermore, u ∈ C1,α loc with α = (p − 2)/p if p > 2. Then, on this basis and applying the Leray–Schauder approach, we obtain the similar results for the Dirichlet problem with continuous data in arbitrary Jordan domains to the quasilinear Poisson equations of the form △u(z) = h(z) · f(u(z)) with the same assumptions on h as for g above and continuous functions f : R → R, either bounded or with nondecreasing |f | of |t| such that f(t)/t → 0 as t → ∞. We also give here applications to mathematical physics that are relevant to problems of diffusion with absorbtion, plasma and combustion. In addition, we consider the Dirichlet problem for the Poisson equations in the unit disk D ⊂ C with arbitrary boundary data φ : ∂D → R that are measurable with respect to logarithmic capacity. Here we establish the existence of continuous nonclassical solutions u of the problem in terms of the angular limits in D a.e. on ∂D with respect to logarithmic capacity with the same local properties as above. Finally, we extend these results to almost smooth Jordan domains with qusihyperbolic boundary condition by Gehring–Martio. MSC: Primary 30C62,31A05, 31A20, 31A25, 31B25, 35J61. Secondary 30E25, 31C05, 34M50, 35F45, 35Q15. Keywords: Dirichlet problem, quasilinear Poisson equation, logarithmic potential, logarithmic capacity, angular limits. 1. Introduction. First of all, recall that the Poisson kernel is the 2π−periodic function Pr(Θ) := 1− r2 1− 2r cosΘ + r2 , r < 1 , Θ ∈ R . (1) Here we will apply the notation of the Poisson integral in the unit disk D : Pφ(z) := 1 2π π∫ −π Pr(ϑ− t) φ(eit) dt , z = reiϑ, r < 1 , ϑ ∈ R (2) for arbitrary continuous functions φ : ∂D → R. As known, Pφ is a harmonic function in D that is extended by continuity to D with φ as its boundary data, see e.g. I.D.2 in [18]. Similarly, given a Jordan domain D in C and a continuous boundary function φ : ∂D → R, let us denote by Dφ the harmonic function in D that has the continuous extension to D with φ as its boundary data. As known, by the Lindelöf maximum principle, see e.g. Lemma 1.1 in [10], we have the uniqueness theorem for the bounded 30 Dirichlet problem for Poisson equations in Jordan domains harmonic functions with continuous boundary data. By the Riemann theorem, see e.g. Theorem II.2.1 in [14], there is a conformal mapping f : D → D that is extended to a homeomorphism f̃ : D → D by the Caratheodory theorem, see e.g. Theorem II.3.4 in [14]. Thus, the Dirichlet operator Dφ has the following useful representation Dφ(z) = Pφ◦f−1 ∗ (f(z)), z ∈ D, where f∗ = f̃ |∂D . (3) It is also known, see e.g. Corollary 1 in [16], that the Newtonian potential Ng(z) := 1 2π ∫ C log |z − w| g(w) dm(w) (4) of integrable functions g : C → R with compact support satisfies the Poisson equation △Ng = g (5) in the distributional sense, i.e.,∫ C Ng(z)△ψ(z) dm(z) = ∫ C ψ(z) g(z) dm(z) ∀ ψ ∈ C∞ 0 (C) . (6) As usual, here C∞ 0 (C) denotes the class of all infinitely differentiable functions ψ : C → R with compact support in C, △ = ∂2 ∂x2 + ∂2 ∂y2 is the Laplace operator and dm(z) corresponds to the Lebesgue measure in C. 2. Dirichlet problem with continuous data. By Theorem 2 in [16] we come to the following result on the existence, regularity and representation of solutions for the Dirichlet problem to the Poisson equation in arbitrary Jordan domains D in C where we assume that the charge density g is extended by zero outside of D. Theorem 1. Let D be a Jordan domain in C, φ : ∂D → R be a continuous function and g : D → R belong to the class Lp(D) for p > 1. Then the function U := Ng − DN∗ g + Dφ , N∗ g := Ng|∂D , (7) is continuous in D with U |∂D = φ, belongs to the class W 2,p loc (D) and satisfies the Poisson equation △U = g a.e. in D. Moreover, U ∈ W 1,q loc (D) for some q > 2 and U is locally Hölder continuous in D. Furthermore, U ∈ C1,α loc (D) with α = (p − 2)/p if g ∈ Lp(D) for p > 2. Remark 1. Note also by the way that a generalized solution of the Dirichlet problem to the Poisson equation in the class C(D) ∩W 1,2 loc (D) is unique at all, see e.g. Theorem 8.30 in [13], and (7) gives the effective representation of this unique solution. The case of quasilinear Poisson equations is reduced to the case of the linear Poisson equations by the Leray–Schauder approach. 31 V. Gutlyanskĭı, V. Ryazanov, E. Yakubov Theorem 2. Let D be a Jordan domain in C, φ : ∂D → R be a continuous function and h : D → R be a function in the class Lp(D) for p > 1. Suppose that a continuous function f : R → R has nondecreasing |f | of |t| and lim t→+∞ f(t) t = 0 . (8) Then there is a continuous function U : D → R with U |∂D = φ, U |D ∈W 2,p loc such that △U(z) = h(z) · f(U(z)) for a.e. z ∈ D . (9) Moreover, U ∈W 1,q loc (D) for some q > 2 and U is locally Hölder continuous. Furthermore, U ∈ C1,α loc (D) with α = (p− 2)/p if p > 2. In particular, the latter statement in Theorem 2 implies that U ∈ C1,α loc (D) for all α = (0, 1) if h is bounded. Proof. If ∥h∥p = 0 or ∥f∥C = 0, then the Dirichlet operator Dφ gives the desired solution of the Dirichlet problem for equation (9), see e.g. I.D.2 in [18]. Hence we may assume further that ∥h∥p ̸= 0 and ∥f∥C ̸= 0. By Theorem 1 and the maximum principle for harmonic functions, we obtain the family of operators F (g; τ) : Lp(D) → Lp(D), τ ∈ [0, 1]: F (g; τ) := τh · f(Ng −DN∗ g +Dφ) , N ∗ g := Ng|∂D , ∀ τ ∈ [0, 1] (10) which satisfies all groups of hypothesis H1-H3 of Theorem 1 in [22]. H1). First of all, F (g; τ) ∈ Lp(D) for all τ ∈ [0, 1] and g ∈ Lp(D) because by Theorem 1 f(Ng −DN∗ g + Dφ) is a continuous function and, moreover, by Theorem 1 in [16] ∥F (g; τ)∥p ≤ ∥h∥p |f ( 2M ∥g∥p + ∥φ∥C) | < ∞ ∀ τ ∈ [0, 1] . Thus, by Theorem 1 in combination with the Arzela–Ascoli theorem, see e.g. Theorem IV.6.7 in [6], the operators F (g; τ) are completely continuous for each τ ∈ [0, 1] and even uniformly continuous with respect to the parameter τ ∈ [0, 1]. H2). The index of the operator F (g; 0) is obviously equal to 1. H3). By Theorem 1 in [16] and the maximum principle for harmonic functions, we have the estimate for solutions g ∈ Lp of the equations g = F (g; τ): ∥g∥p ≤ ∥h∥p |f ( 2M ∥g∥p + ∥φ∥C) | ≤ ∥h∥p |f( 3M ∥g∥p)| whenever ∥g∥p ≥ ∥φ∥C/M , i.e. then it should be |f( 3M ∥g∥p)| 3M ∥g∥p ≥ 1 3M ∥h∥p (11) and hence ∥g∥p should be bounded in view of condition (8). 32 Dirichlet problem for Poisson equations in Jordan domains Thus, by Theorem 1 in [22] there is a function g ∈ Lp(D) such that g = F (g; 1) and, consequently, by our Theorem 1 the function U := Ng − DN∗ g + Dφ gives the desired solution of the Dirichlet problem for the quasilinear Poisson equation (9). � Remark 2. As it is clear from the proof, Theorem 2 is valid if f is an arbitrary continuous bounded function. Moreover, condition (8) can be replaced by the weaker lim sup t→+∞ |f(t)| t < 1 3M∥h∥p (12) where M is the constant from the estimate (14) of Theorem 1 in [16]. Theorem 2 together with Remark 2 can be applied to some physical problems. The first circle of such applications is relevant to reaction-diffusion problems. Problems of this type are discussed in [5], p. 4, and, in detail, in [2]. A nonlinear system is obtained for the density u and the temperature T of the reactant. Upon eliminating T the system can be reduced to the equation △u = λ · f(u) (13) with h(z) ≡ λ > 0 and, for isothermal reactions, f(u) = uq where q > 0 is called the order of the reaction. It turns out that the density of the reactant u may be zero in a subdomain called a dead core. A particularization of results in Chapter 1 of [5] shows that a dead core may exist just if and only if 0 < q < 1 and λ is large enough, see also the corresponding examples in [15]. In this connection, the following statements may be of independent interest. Corollary 1. Let D be a Jordan domain in C, φ : ∂D → R be a continuous function and let h : D → R be a function in the class Lp(D), p > 1. Then there exists a continuous function u : D → R with u|∂D = φ such that u ∈W 2,p loc (D) and △u(z) = h(z) · uq(z) , 0 < q < 1 (14) a.e. in D. Moreover, u ∈ W 1,β loc (D) for some β > 2 and u is locally Hölder continuous in D. Furthermore, u ∈ C1,α loc (D) with α = (p− 2)/p if p > 2. Corollary 2. Let D be a Jordan domain in C and φ : ∂D → R be a continuous function. Then there is a continuous function u : D → R with u|∂D = φ such that u ∈W 2,p loc (D) for all p ≥ 1 and △u(z) = uq(z) , 0 < q < 1 , (15) a.e. in D. Moreover, u ∈ C1,α loc (D) for all α ∈ (0, 1). Note also that certain mathematical models of a thermal evolution of a heated plasma lead to nonlinear equations of the type (13). Indeed, it is known that some of them have the form △ψ(u) = f(u) with ψ′(0) = +∞ and ψ′(u) > 0 if u ̸= 0 as, for 33 V. Gutlyanskĭı, V. Ryazanov, E. Yakubov instance, ψ(u) = |u|q−1u under 0 < q < 1, see e.g. [5]. With the replacement of the function U = ψ(u) = |u|q · signu, we have that u = |U |Q · signU , Q = 1/q, and, with the choice f(u) = |u|q2 · signu, we come to the equation △U = |U |q · signU = ψ(U). Corollary 3. Let D be a Jordan domain in C and φ : ∂D → R be a continuous function. Then there is a continuous function U : D → R with U |∂D = φ such that u ∈W 2,p loc (D) for all p ≥ 1 and △U(z) = |U(z)|q−1U(z) , 0 < q < 1 , (16) a.e. in D. Moreover, U ∈ C1,α loc (D) for all α ∈ (0, 1). Finally, we recall that in the combustion theory, see e.g. [3], [24] and the references therein, the following model equation ∂u(z, t) ∂t = 1 δ · △u + eu , t ≥ 0, z ∈ D, (17) takes a special place. Here u ≥ 0 is the temperature of the medium and δ is a certain positive parameter. We restrict ourselves here by the stationary case, although our approach makes it possible to study the parabolic equation (17), see [15]. Namely, the equation (9) is appeared here with h ≡ δ > 0 and the function f(u) = e−u that is bounded as in Remark 2. Corollary 4. Let D be a Jordan domain in C and φ : ∂D → R be a continuous function. Then there is a continuous function U : D → R with U |∂D = φ such that u ∈W 2,p loc (D) for all p ≥ 1 and △U(z) = δ · e−U(z) , δ > 0 , (18) a.e. in D. Moreover, U ∈ C1,α loc (D) for all α ∈ (0, 1). Due to the factorization theorem in [15], we plan to extend these results to semi– linear equations describing the corresponding physical phenomena in anisotropic and inhomogeneous media in arbitrary Jordan domains. 3. The definition and preliminary remarks on the logarithmic capacity. Given a bounded Borel set E in the plane C, a mass distribution on E is a nonnegative completely additive function ν of a set defined on its Borel subsets with ν(E) = 1. The function Uν(z) := ∫ E log ∣∣∣∣ 1 z − ζ ∣∣∣∣ dν(ζ) (19) is called a logarithmic potential of the mass distribution ν at a point z ∈ C. A logarithmic capacity C(E) of the Borel set E is the quantity C(E) = e−V , V = inf ν Vν(E) , Vν(E) = sup z Uν(z) . (20) 34 Dirichlet problem for Poisson equations in Jordan domains It is also well-known the following geometric characterization of the logarithmic capacity, see e.g. the point 110 in [23]: C(E) = τ(E) := lim n→∞ V 2 n(n−1) n (21) where Vn denotes the supremum of the product V (z1, . . . , zn) = l=1,...,n∏ k<l |zk − zl| (22) taken over all collections of points z1, . . . , zn in the set E. Following Fékete, see [9], the quantity τ(E) is called the transfinite diameter of the set E. Remark 3. Thus, we see that if C(E) = 0, then C(f(E)) = 0 for an arbitrary mapping f that is continuous by Hölder and, in particular, for quasiconformal mappings on compact sets, see e.g. Theorem II.4.3 in [21]. In order to introduce sets that are measurable with respect to logarithmic capacity, we define, following [7], inner C∗ and outer C∗ capacities : C∗(E) : = sup F⊆E C(E), C∗(E) : = inf E⊆O C(O) (23) where supremum is taken over all compact sets F ⊂ C and infimum is taken over all open sets O ⊂ C. A set E ⊂ C is called measurable with respect to the logarithmic capacity if C∗(E) = C∗(E), and the common value of C∗(E) and C∗(E) is still denoted by C(E). A function φ : E → C defined on a bounded set E ⊂ C is called measurable with respect to logarithmic capacity if, for all open sets O ⊆ C, the sets Ω = {z ∈ E : φ(z) ∈ O} (24) are measurable with respect to logarithmic capacity. It is clear from the definition that the set E is itself measurable with respect to logarithmic capacity. Note also that sets of logarithmic capacity zero coincide with sets of the so-called absolute harmonic measure zero introduced by Nevanlinna, see Chapter V in [23]. Hence a set E is of (Hausdorff) length zero if C(E) = 0, see Theorem V.6.2 in [23]. However, there exist sets of length zero having a positive logarithmic capacity, see e.g. Theorem IV.5 in [7]. Remark 4. It is known that Borel sets and, in particular, compact and open sets are measurable with respect to logarithmic capacity, see e.g. Lemma I.1 and Theorem III.7 in [7]. Moreover, as it follows from the definition, any set E ⊂ C of finite logarithmic capacity can be represented as a union of a sigma-compactum (union of countable collection of compact sets) and a set of logarithmic capacity zero. Thus, 35 V. Gutlyanskĭı, V. Ryazanov, E. Yakubov the measurability of functions with respect to logarithmic capacity is invariant under Hölder continuous change of variables. It is also known that the Borel sets and, in particular, compact sets are measurable with respect to all Hausdorff’s measures and, in particular, with respect to measure of length, see e.g. theorem II(7.4) in [27]. Consequently, any set E ⊂ C of finite logarithmic capacity is measurable with respect to measure of length. Thus, on such a set any function φ : E → C being measurable with respect to logarithmic capacity is also measurable with respect to measure of length on E. However, there exist functions that are measurable with respect to measure of length but not measurable with respect to logarithmic capacity, see e.g. Theorem IV.5 in [7]. Dealing with measurable boundary functions φ(ζ) with respect to the logarithmic capacity, we will use the abbreviation q.e. (quasi-everywhere) on a set E ⊂ C, if a property holds for all ζ ∈ E except its subset of zero logarithmic capacity, see [19]. 4. Dirichlet problem with measurable data in the unit disk. In the paper [8], it was proved as Theorem 3.1 the following analog of the known Luzin theorem in terms of logarithmic capacity, cf. e.g. Theorem VII(2.3) in [27]. Proposition 1. Let φ : [a, b] → R be a measurable function with respect to logarithmic capacity. Then there is a continuous function Φ : [a, b] → R such that Φ′(x) = φ(x) q.e. on (a, b). Furthermore, the function Φ can be chosen such that Φ(a) = Φ(b) = 0 and |Φ(x)| ≤ ε under arbitrary prescribed ε > 0 for all x ∈ [a, b]. Corollary 5. Let φ : ∂D → R be a measurable function with respect to logarithmic capacity. Then there is a continuous function Φ : ∂D → R such that Φ′(eit) = φ(eit) q.e. on R. The Poisson–Stieltjes integral ΛΦ(z) := 1 2π π∫ −π Pr(ϑ− t) dΦ(eit) , z = reiϑ, r < 1 , ϑ ∈ R (25) is well-defined for arbitrary continuous functions Φ : ∂D → R, see e.g. Section 2 in [26]. Directly by the definition of the Riemann–Stieltjes integral and the Weierstrass type theorem for harmonic functions, see e.g. Theorem I.3.1 in [14], ΛΦ is a harmonic function in the unit disk D := {z ∈ C : |z| < 1} because the function Pr(ϑ − t) is the real part of the analytic function Aζ(z) := ζ + z ζ − z , ζ = eit, z = reiϑ , r < 1 , ϑ and t ∈ R . (26) Next, by Theorem 1 in [26] we have the following useful conclusion. 36 Dirichlet problem for Poisson equations in Jordan domains Proposition 2. Let φ : ∂D → R be a measurable function with respect to logarithmic capacity and Φ : ∂D → R be a continuous function with Φ′(eit) = φ(eit) q.e. on R. Then ΛΦ has the angular limit lim z→ζ ΛΦ(z) = φ(ζ) q.e. on ∂D . (27) Finally, by Theorem 2 in [16], Proposition 2 and the known Poisson formula, see e.g. I.D.2 in [18], we come to the following result on the existence, regularity and representation of solutions for the Dirichlet problem to the Poisson equation in the unit disk D. We assume that the charge density g is extended by zero outside of D in the next theorem. Theorem 3. Let a function φ : ∂D → R be measurable with respect to logarithmic capacity and let a continuous function Φ correspond to φ by Corollary 5. Suppose that a function g : D → R is in the class Lp(D) for p > 1. Then the following function in D U := Ng − PN∗ g + ΛΦ , N∗ g := Ng|∂D , (28) belongs to the class W 2,p loc (D), satisfies the Poisson equation △U = g a.e. in D and has the angular limit lim z→ζ U(z) = φ(ζ) q.e. on ∂D . (29) Moreover, U ∈ W 1,q loc (D) for some q > 2 and U is locally Hölder continuous. Furthermore, U ∈ C1,α loc (D) with α = (p− 2)/p if g ∈ Lp(D) for p > 2. Remark 5. Note that by the Luzin result, see also Theorem 3 in [26], the statement of Theorem 3 is valid in terms of the length measure as well as the harmonic measure on ∂D. However, by the well–known Ahlfors–Beurling example, see [1], the sets of length zero as well as of harmonic measure zero are not invariant with respect to quasiconformal changes of variables. The latter circumstance does not make it is possible to apply the result in the future for the extension of the statement to generalizations of the Laplace equation in anisotropic and inhomogeneous media. Hence we prefer to use logarithmic capacity. 5. Dirichlet problem with measurable data in almost smooth domains. We say that a Jordan curve Γ in C is almost smooth if Γ has a tangent q.e. Here it is said that a straight line L in C is tangent to Γ at a point z0 ∈ Γ if lim sup z→z0,z∈Γ dist (z, L) |z − z0| = 0 . (30) In particular, Γ is almost smooth if Γ has a tangent at all its points except a countable set. The nature of such Jordan curves Γ is complicated enough because the countable set can be everywhere dense in Γ. 37 V. Gutlyanskĭı, V. Ryazanov, E. Yakubov Now, given a domain D in C, kD(z, z0) denotes the quasihyperbolic distance, kD(z, z0) := inf γ ∫ γ ds d(ζ, ∂D) , (31) introduced in the paper [12]. Here d(ζ, ∂D) denotes the Euclidean distance from the point ζ ∈ D to ∂D and the infimum is taken over all rectifiable curves γ joining the points z and z0 in D. Next, it is said that a domain D satisfies the quasihyperbolic boundary condi- tion if kD(z, z0) ≤ a ln d(z0, ∂D) d(z, ∂D) + b ∀ z ∈ D (32) for constants a and b and a point z0 ∈ D. The latter notion was introduced in [10] but, before it, was first applied in [4]. Remark 6. Given a Jordan domain D in C with the almost smooth boundary satisfying the quasihyperbolic boundary condition. By the Riemann theorem, see e.g. Theorem II.2.1 in [14], there is a conformal mapping f : D → D that is extended to a homeomorphism f̃ : D → D by the Caratheodory theorem, see e.g. Theorem II.3.4 in [14]. Moreover, f∗ := f̃ |∂D, as well as f−1 ∗ , is Hölder continuous by Corollary to Theorem 1 in [4]. Thus, by Remark 4 a function φ : ∂D → R is measurable with respect to logarithmic capacity if and only if the function ψ := φ ◦ f−1 ∗ : ∂D → R is so. Set Φ := Ψ ◦ f∗ where Ψ : ∂D → R is a continuous function corresponding to ψ by Corollary 5. Proposition 3. Let D be a Jordan domain in C with the almost smooth boundary satisfying the quasihyperbolic boundary condition. Suppose that φ : ∂D → R is measu- rable with respect to logarithmic capacity and Φ : ∂D → R is the continuous function corresponding to φ by Remark 6. Then the harmonic function LΦ(z) := ΛΦ◦f−1 ∗ (f(z)) has the angular limit φ q.e. on ∂D. Proof. Indeed, by Remark 6 and Proposition 2 there is the angular limit lim w→ξ ΛΨ(w) = ψ(ξ) q.e. on ∂D . (33) By the Lindelöf theorem, see e.g. Theorem II.C.2 in [18], if ∂D has a tangent at a point ζ, then arg [f̃(ζ)− f̃(z)]− arg [ζ − z] → const as z → ζ . After the change of variables ξ := f̃(ζ) and w := f̃(z), we have that arg [ξ − w]− arg [f̃−1(ξ)− f̃−1(w)] → const as w → ξ . In other words, the conformal images of sectors in D with a vertex at ξ is asymptotically the same as sectors in D with a vertex at ζ. Thus, nontangential paths in D are transformed under f̃−1 into nontangential paths in D. 38 Dirichlet problem for Poisson equations in Jordan domains Recall that firstly the almost smooth Jordan curve ∂D has a tangent q.e., secondly by Remark 6 the mappings f∗ and f−1 ∗ are Hölder continuous, and thirdly by Remark 3 they transform sets of logarithmic capacity zero into sets of logarithmic capacity zero. Consequently, (33) implies the desired conclusion. � Finally, by Theorem 2 in [16], Proposition 3 and the Poisson formula, we come to the following result on the existence, regularity and representation of solutions for the Dirichlet problem to the Poisson equation in the Jordan domains. We assume here that the charge density g is extended by zero outside of D in the next theorem. Theorem 4. Let D be a Jordan domain in C with the almost smooth boundary satisfying the quasihyperbolic boundary condition, a function φ : ∂D → R be measurable with respect to logarithmic capacity and let a continuous function Φ correspond to φ by Remark 6. Suppose that a function g : D → R is in the class Lp(D) for p > 1. Then the following function in D U := Ng − DN∗ g + LΦ , N∗ g := Ng|∂D , (34) belongs to the class W 2,p loc (D), satisfies the Poisson equation △U = g a.e. in D and has the angular limit lim z→ζ U(z) = φ(ζ) q.e. on ∂D . (35) Moreover, U ∈ W 1,q loc (D) for some q > 2 and U is locally Hölder continuous. Furthermore, U ∈ C1,α loc (D) with α = (p− 2)/p if g ∈ Lp(D) for p > 2. Remark 7. Note that by the Luzin result, see also Theorem 3 in [26], the statement of Theorem 4 is valid in terms of the length measure on rectifiable ∂D. Indeed, by the Riesz theorem length f−1 ∗ (E) = 0 whenever E ⊂ ∂D with |E| = 0, see e.g. Theorem II.C.1 and Theorems II.D.2 in [18]. Conversely, by the Lavrentiev theorem |f∗(E)| = 0 whenever E ⊂ ∂D and length E = 0, see [20], see also the point III.1.5 in [25]. References 1. Ahlfors, L., Beurling, A. (1956). The boundary correspondence under quasiconformal mappings. Acta Math., 96, 125-142. 2. Aris, R. (1975). The Mathematical Theory of Diffusion and Reaction in Permeable Catalysts. V. I-II. Oxford: Clarendon Press. 3. Zeldovich, Ia.B., Barenblatt, G.I., Librovich, V.B., Makhviladze, G.M. (1985). The mathematical theory of combustion and explosions. New York: Consult. Bureau. 4. Becker, J., Pommerenke, Ch. (1982). Hölder continuity of conformal mappings and nonquasicon- formal Jordan curves. Comment. Math. Helv., 57 (2), 221-225. 5. Diaz, J.I. (1985). Nonlinear partial differential equations and free boundaries. V. I. Elliptic equations. In Research Notes in Mathematics. (Vol. 106). Boston: Pitman. 6. Dunford, N., Schwartz, J.T. (1958). Linear Operators. I. General Theory, Pure and Applied Mathe- matics. (Vol. 7). New York, London: Interscience Publishers. 7. Carleson L. (1971). Selected Problems on Exceptional Sets. Princeton etc.: Van Nostrand Co., Inc. 8. Efimushkin, A.S., Ryazanov, V.I. (2015). On the Riemann-Hilbert problem for the Beltrami equa- tions in quasidisks. Ukr. Mat. Visn. 12 (2), 190-209; J. Math. Sci. (N.Y.) 211 (5), 646-659. 39 V. Gutlyanskĭı, V. Ryazanov, E. Yakubov 9. Fékete, M. (1923). Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten. Math. Z., 17, 228-249. 10. Garnett, J.B., Marshall, D.E. (2005). Harmonic Measure. Cambridge: Cambridge Univ. Press. 11. Gehring, F.W., Martio, O. (1985). Lipschitz classes and quasiconformal mappings. Ann. Acad. Sci. Fenn. Ser. A I Math., 10, 203-219. 12. Gehring, F.W., Palka, B.P. (1976). Quasiconformally homogeneous domains. J. Analyse Math., 30, 172-199. 13. Gilbarg, D., Trudinger, N. (1983). Elliptic partial differential equations of second order. In Grundle- hren der Mathematischen Wissenschaften. (Vol. 224). Berlin: Springer-Verlag; (1989) Ellipticheskie differentsial’nye uravneniya s chastnymi proizvodnymi vtorogo poryadka. Moscow: Nauka. 14. Goluzin, G.M. (1969). Geometric theory of functions of a complex variable. Transl. of Math. Monographs. 26. Providence, R.I.: American Mathematical Society. 15. Gutlyanskii, V.Ya., Nesmelova, O.V., Ryazanov, V.I. (2017). On quasiconformal maps and semi- linear equations in the plane. Ukr. Mat. Visn., 14 (2), 161-191; (2018) J. Math. Sci., 229 (1), 7-29. 16. Gutlyanskii, V.Ya., Nesmelova, O.V., Ryazanov, V.I. (2017). On the Dirichlet problem for quasi- linear Poisson equations. Proc. IAMM NASU, 31, 28-37. 17. Gutlyanskii, V., Ryazanov, V., Yefimushkin, A. (2015). On the boundary value problems for quasiconformal functions in the plane. Ukr. Mat. Visn., 12 (3), 363-389; (2016) J. Math. Sci. (N.Y.), 214 (2), 200-219. 18. Koosis, P. (1998). Introduction to Hp spaces. Cambridge Tracts in Mathematics. (Vol. 115). Cam- bridge: Cambridge Univ. Press. 19. Landkof, N. S. (1966). Foundations of modern potential theory. Moscow: Nauka; (1972) Grundlehren der mathematischen Wissenschaften. (Vol. 180). New York-Heidelberg: Springer-Verlag. 20. Lavrentiev, M. (1936). On some boundary problems in the theory of univalent functions. Mat. Sbornik N.S., 1 (43)(6), 815-846 (in Russian). 21. Lehto, O., Virtanen, K.J. (1973). Quasiconformal mappings in the plane. Berlin, Heidelberg: Springer-Verlag. 22. Leray, J., Schauder, Ju. (1934). Topologie et equations fonctionnelles. Ann. Sci. Ecole Norm. Sup., 51 (3), 45-78 (in French); (1946) Topology and functional equations. Uspehi Matem. Nauk (N.S.), 1,(3-4) (13-14), 71-95. 23. Nevanlinna, R. (1944). Eindeutige analytische Funktionen. Michigan: Ann Arbor. 24. Pokhozhaev, S.I. (2010). On an equation of combustion theory. Mat. Zametki,. 88 (1), 53-62; (2010) Math. Notes, 88 (1-2), 48-56. 25. Priwalow, I.I. (1956). Randeigenschaften analytischer Funktionen. Hochschulbücher für Mathematik. (Bd. 25). Berlin: Deutscher Verlag der Wissenschaften. 26. Ryazanov, V. (2018). The Stieltjes integrals in the theory of harmonic functions. Investigations on linear operators and function theory. Part 46, Zap. Nauchn. Sem. POMI, 467, 151-168; (2019) J. Math. Sci. (N. Y.), 243 (6), 922-933. 27. Saks, S. (1937). Theory of the integral. Warsaw; (1964) New York: Dover Publications Inc. В. Гутлянский, В. Рязанов, Э. Якубов Задача Дирихле для уравнений Пуассона в жордановых областях. Прежде всего, мы изучаем задачу Дирихле для уравнений Пуассона △u(z) = g(z) с g ∈ Lp, p > 1, и непрерывными граничными данными φ : ∂D → R в произвольных жордановых обла- стях D ⊂ C и доказываем существование непрерывных решений u этой задачи в классе W 2,p loc . Кроме того, u ∈ W 1,q loc для некоторого q > 2 и u локально непрерывны по Гельдеру. Более то- го, u ∈ C1,α loc с α = (p − 2)/p, если p > 2. Затем, на этой основе и применяя подход Лере– Шаудера, мы получаем аналогичные результаты для задачи Дирихле с непрерывными гранич- ными данными в произвольных жордановых областях для квазилинейных уравнений Пуассона 40 Dirichlet problem for Poisson equations in Jordan domains вида △u(z) = h(z) · f(u(z)) с теми же предположениями о функции h как выше для g и непре- рывных функций f : R → R, которые либо ограничены, либо с неубывающим |f | от |t|, таких, что f(t)/t → 0 при t → ∞. Мы также приводим здесь приложения к математической физике, которые относятся к задачам диффузии с абсорбцией, плазме и горению. В дополнение, мы рас- сматриваем задачу Дирихле для уравнений Пуассона в единичном круге D ⊂ C с произвольными граничными данными φ : ∂D → R, которые измеримы относительно логарифмической емкости. Здесь мы устанавливаем существование неклассических решений этой проблемы в терминах уг- ловых пределов в D п.в. на ∂D относительно логарифмической емкости с теми же локальными свойствами как и выше. Наконец, мы распространяем эти результаты на почти гладкие жорда- новы области D в C с квазигиперболическим граничным условием по Герингу–Мартио. Ключевые слова: задача Дирихле, квазилинейные уравнения Пуассона, логарифмический по- тенциал, логарифмическая емкость, угловые пределы. В. Гутлянський, В. Рязанов, Е. Якубов Задача Дiрихле для рiвнянь Пуасона у жорданових областях. Перш за все ми вивчаємо задачу Дiрихле для рiвнянь Пуасона △u(z) = g(z) с g ∈ Lp, p > 1, та неперервними граничними даними φ : ∂D → R в довiльних жорданових областях D ⊂ C та дово- димо iснування неперервних рiшень u цiєї задачi в класi W 2,p loc . Крiм цього, u ∈W 1,q loc для деякого q > 2 та u локально неперервнi за Гельдером. Бiльш того, u ∈ C1,α loc з α = (p − 2)/p, якщо p > 2. Потiм, на цiй основi, застосовуючи пiдхiд Лере–Шаудера, ми отримуємо аналогiчнi результати для задачi Дiрихле з неперервними граничними даними в довiльних жорданових областях для квазiлiнiйних рiвнянь Пуасона виду △u(z) = h(z) · f(u(z)) з тими же припущеннями про функцiї h як вище для g та неперервних функцiй f : R → R, якi або обмеженi, або з неспадним |f | вiд |t|, таких, що f(t)/t → 0 при t → ∞. Ми також наводимо тут додатки до математичної фiзики, якi вiдносяться до задач дифузiї з абсорбцiєю, плазмi та горiнню. На додаток, ми розглядаємо задачу Дiрихле для рiвнянь Пуасона в одиничному колi D ⊂ C з довiльними граничними даними φ : ∂D → R, якi вимiрнi вiдносно логарифмiчної ємностi. Тут ми встановлюємо iснування некла- сичних рiшень цiєї проблеми у термiнах кутових границь у D п.в. на ∂D вiдносно логарiфмiчної ємностi з тими ж локальними властивостями як i вище. Нарештi, ми поширюємо цi результати на майже гладкi жордановi областi D в C з квазiгiперболiчною граничною умовою за Герингом– Мартiо. Ключовi слова: задача Дiрихле, квазiлiнiйнi рiвняння Пуасона, логарифмiчна ємнiсть, куто- вi межи. Institute of Applied Mathematics and Mechanics of the NAS of Ukraine, Slavyansk, Ukraine; Holon Institute of Technology, Holon, Israel vgutlyanskii@gmail.com, Ryazanov@nas.gov.ua, yakubov@hit.ac.il, eduardyakubov@gmail.com Received 17.12.2018 41