Initial-boundary problems for semilinear hiperbolic systems with singular coefficients

In the paper we use the framework of Colombeau algebras of generalized functions to study existence and uniqueness of global generalized solutions to mixed non-local problems for a semilinear hyperbolic system. Coefficients of the system as well as initial and boundary data are allowed to be strongl...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Нелинейные граничные задачи
Дата:2005
Автор: Kmit, I.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2005
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/169155
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Initial-boundary problems for semilinear hiperbolic systems with singular coefficients / I. Kmit // Нелинейные граничные задачи. — 2005. — Т. 15. — С. 74-84. — Бібліогр.: 17 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-169155
record_format dspace
spelling Kmit, I.
2020-06-06T18:05:51Z
2020-06-06T18:05:51Z
2005
Initial-boundary problems for semilinear hiperbolic systems with singular coefficients / I. Kmit // Нелинейные граничные задачи. — 2005. — Т. 15. — С. 74-84. — Бібліогр.: 17 назв. — англ.
0236-0497
https://nasplib.isofts.kiev.ua/handle/123456789/169155
In the paper we use the framework of Colombeau algebras of generalized functions to study existence and uniqueness of global generalized solutions to mixed non-local problems for a semilinear hyperbolic system. Coefficients of the system as well as initial and boundary data are allowed to be strongly singular, as the Dirac delta function and derivatives thereof. To obtain the existence-uniqueness result we prove a criterion of invertibilitv in the full version of the Colombeau algebras.
en
Інститут прикладної математики і механіки НАН України
Нелинейные граничные задачи
Initial-boundary problems for semilinear hiperbolic systems with singular coefficients
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Initial-boundary problems for semilinear hiperbolic systems with singular coefficients
spellingShingle Initial-boundary problems for semilinear hiperbolic systems with singular coefficients
Kmit, I.
title_short Initial-boundary problems for semilinear hiperbolic systems with singular coefficients
title_full Initial-boundary problems for semilinear hiperbolic systems with singular coefficients
title_fullStr Initial-boundary problems for semilinear hiperbolic systems with singular coefficients
title_full_unstemmed Initial-boundary problems for semilinear hiperbolic systems with singular coefficients
title_sort initial-boundary problems for semilinear hiperbolic systems with singular coefficients
author Kmit, I.
author_facet Kmit, I.
publishDate 2005
language English
container_title Нелинейные граничные задачи
publisher Інститут прикладної математики і механіки НАН України
format Article
description In the paper we use the framework of Colombeau algebras of generalized functions to study existence and uniqueness of global generalized solutions to mixed non-local problems for a semilinear hyperbolic system. Coefficients of the system as well as initial and boundary data are allowed to be strongly singular, as the Dirac delta function and derivatives thereof. To obtain the existence-uniqueness result we prove a criterion of invertibilitv in the full version of the Colombeau algebras.
issn 0236-0497
url https://nasplib.isofts.kiev.ua/handle/123456789/169155
citation_txt Initial-boundary problems for semilinear hiperbolic systems with singular coefficients / I. Kmit // Нелинейные граничные задачи. — 2005. — Т. 15. — С. 74-84. — Бібліогр.: 17 назв. — англ.
work_keys_str_mv AT kmiti initialboundaryproblemsforsemilinearhiperbolicsystemswithsingularcoefficients
first_indexed 2025-12-07T13:33:42Z
last_indexed 2025-12-07T13:33:42Z
_version_ 1850856620653805568