Asymptotic analysis of the spectral Neumann problem in thick multi-structure of type 3:1:1

The spectral Neumann problem is considered in a thick multi-structure, which is the union of some three-dimensional domain (the junction’s body) and a large number of ε-periodically situated thin cylinders along some curve (the joint zone) on the boundary of junction’s body. The asymptotic behaviour...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Нелинейные граничные задачи
Datum:2005
1. Verfasser: Mel'nyk, T.A.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2005
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/169156
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Asymptotic analysis of the spectral Neumann problem in thick multi-structure of type 3:1:1 / T.A. Mel'nyk // Нелинейные граничные задачи. — 2005. — Т. 15. — С. 85-98. — Бібліогр.: 12 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-169156
record_format dspace
spelling Mel'nyk, T.A.
2020-06-06T18:07:41Z
2020-06-06T18:07:41Z
2005
Asymptotic analysis of the spectral Neumann problem in thick multi-structure of type 3:1:1 / T.A. Mel'nyk // Нелинейные граничные задачи. — 2005. — Т. 15. — С. 85-98. — Бібліогр.: 12 назв. — англ.
0236-0497
https://nasplib.isofts.kiev.ua/handle/123456789/169156
The spectral Neumann problem is considered in a thick multi-structure, which is the union of some three-dimensional domain (the junction’s body) and a large number of ε-periodically situated thin cylinders along some curve (the joint zone) on the boundary of junction’s body. The asymptotic behaviour (as ε → 0) of the eigenvalues and eigenfunctions is investigated. Three spectral problems form asymptotics for the eigenvalues and eigenfunctions of this problem, namely, the spectral Neumann problem in junction's body; some spectral problem in a plane domain, which is filled up by the thin cylinders in the limit passage (each eigenvalue of this problem has infinite multiplicity); and the spectral problem for some singular integral operator given on the joint zone. The Hausdorff convergence of the spectrum is proved, the leading terms of asymptotics are constructed (as ε → 0) and asymptotic estimates are justified for the eigenvalues and the eigenfunctions.
en
Інститут прикладної математики і механіки НАН України
Нелинейные граничные задачи
Asymptotic analysis of the spectral Neumann problem in thick multi-structure of type 3:1:1
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Asymptotic analysis of the spectral Neumann problem in thick multi-structure of type 3:1:1
spellingShingle Asymptotic analysis of the spectral Neumann problem in thick multi-structure of type 3:1:1
Mel'nyk, T.A.
title_short Asymptotic analysis of the spectral Neumann problem in thick multi-structure of type 3:1:1
title_full Asymptotic analysis of the spectral Neumann problem in thick multi-structure of type 3:1:1
title_fullStr Asymptotic analysis of the spectral Neumann problem in thick multi-structure of type 3:1:1
title_full_unstemmed Asymptotic analysis of the spectral Neumann problem in thick multi-structure of type 3:1:1
title_sort asymptotic analysis of the spectral neumann problem in thick multi-structure of type 3:1:1
author Mel'nyk, T.A.
author_facet Mel'nyk, T.A.
publishDate 2005
language English
container_title Нелинейные граничные задачи
publisher Інститут прикладної математики і механіки НАН України
format Article
description The spectral Neumann problem is considered in a thick multi-structure, which is the union of some three-dimensional domain (the junction’s body) and a large number of ε-periodically situated thin cylinders along some curve (the joint zone) on the boundary of junction’s body. The asymptotic behaviour (as ε → 0) of the eigenvalues and eigenfunctions is investigated. Three spectral problems form asymptotics for the eigenvalues and eigenfunctions of this problem, namely, the spectral Neumann problem in junction's body; some spectral problem in a plane domain, which is filled up by the thin cylinders in the limit passage (each eigenvalue of this problem has infinite multiplicity); and the spectral problem for some singular integral operator given on the joint zone. The Hausdorff convergence of the spectrum is proved, the leading terms of asymptotics are constructed (as ε → 0) and asymptotic estimates are justified for the eigenvalues and the eigenfunctions.
issn 0236-0497
url https://nasplib.isofts.kiev.ua/handle/123456789/169156
citation_txt Asymptotic analysis of the spectral Neumann problem in thick multi-structure of type 3:1:1 / T.A. Mel'nyk // Нелинейные граничные задачи. — 2005. — Т. 15. — С. 85-98. — Бібліогр.: 12 назв. — англ.
work_keys_str_mv AT melnykta asymptoticanalysisofthespectralneumannprobleminthickmultistructureoftype311
first_indexed 2025-12-07T17:56:09Z
last_indexed 2025-12-07T17:56:09Z
_version_ 1850873132911427584