Asymptotic analysis of the spectral Neumann problem in thick multi-structure of type 3:1:1
The spectral Neumann problem is considered in a thick multi-structure, which is the union of some three-dimensional domain (the junction’s body) and a large number of ε-periodically situated thin cylinders along some curve (the joint zone) on the boundary of junction’s body. The asymptotic behaviour...
Gespeichert in:
| Veröffentlicht in: | Нелинейные граничные задачи |
|---|---|
| Datum: | 2005 |
| 1. Verfasser: | |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут прикладної математики і механіки НАН України
2005
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/169156 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Asymptotic analysis of the spectral Neumann problem in thick multi-structure of type 3:1:1 / T.A. Mel'nyk // Нелинейные граничные задачи. — 2005. — Т. 15. — С. 85-98. — Бібліогр.: 12 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-169156 |
|---|---|
| record_format |
dspace |
| spelling |
Mel'nyk, T.A. 2020-06-06T18:07:41Z 2020-06-06T18:07:41Z 2005 Asymptotic analysis of the spectral Neumann problem in thick multi-structure of type 3:1:1 / T.A. Mel'nyk // Нелинейные граничные задачи. — 2005. — Т. 15. — С. 85-98. — Бібліогр.: 12 назв. — англ. 0236-0497 https://nasplib.isofts.kiev.ua/handle/123456789/169156 The spectral Neumann problem is considered in a thick multi-structure, which is the union of some three-dimensional domain (the junction’s body) and a large number of ε-periodically situated thin cylinders along some curve (the joint zone) on the boundary of junction’s body. The asymptotic behaviour (as ε → 0) of the eigenvalues and eigenfunctions is investigated. Three spectral problems form asymptotics for the eigenvalues and eigenfunctions of this problem, namely, the spectral Neumann problem in junction's body; some spectral problem in a plane domain, which is filled up by the thin cylinders in the limit passage (each eigenvalue of this problem has infinite multiplicity); and the spectral problem for some singular integral operator given on the joint zone. The Hausdorff convergence of the spectrum is proved, the leading terms of asymptotics are constructed (as ε → 0) and asymptotic estimates are justified for the eigenvalues and the eigenfunctions. en Інститут прикладної математики і механіки НАН України Нелинейные граничные задачи Asymptotic analysis of the spectral Neumann problem in thick multi-structure of type 3:1:1 Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Asymptotic analysis of the spectral Neumann problem in thick multi-structure of type 3:1:1 |
| spellingShingle |
Asymptotic analysis of the spectral Neumann problem in thick multi-structure of type 3:1:1 Mel'nyk, T.A. |
| title_short |
Asymptotic analysis of the spectral Neumann problem in thick multi-structure of type 3:1:1 |
| title_full |
Asymptotic analysis of the spectral Neumann problem in thick multi-structure of type 3:1:1 |
| title_fullStr |
Asymptotic analysis of the spectral Neumann problem in thick multi-structure of type 3:1:1 |
| title_full_unstemmed |
Asymptotic analysis of the spectral Neumann problem in thick multi-structure of type 3:1:1 |
| title_sort |
asymptotic analysis of the spectral neumann problem in thick multi-structure of type 3:1:1 |
| author |
Mel'nyk, T.A. |
| author_facet |
Mel'nyk, T.A. |
| publishDate |
2005 |
| language |
English |
| container_title |
Нелинейные граничные задачи |
| publisher |
Інститут прикладної математики і механіки НАН України |
| format |
Article |
| description |
The spectral Neumann problem is considered in a thick multi-structure, which is the union of some three-dimensional domain (the junction’s body) and a large number of ε-periodically situated thin cylinders along some curve (the joint zone) on the boundary of junction’s body. The asymptotic behaviour (as ε → 0) of the eigenvalues and eigenfunctions is investigated. Three spectral problems form asymptotics for the eigenvalues and eigenfunctions of this problem, namely, the spectral Neumann problem in junction's body; some spectral problem in a plane domain, which is filled up by the thin cylinders in the limit passage (each eigenvalue of this problem has infinite multiplicity); and the spectral problem for some singular integral operator given on the joint zone. The Hausdorff convergence of the spectrum is proved, the leading terms of asymptotics are constructed (as ε → 0) and asymptotic estimates are justified for the eigenvalues and the eigenfunctions.
|
| issn |
0236-0497 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/169156 |
| citation_txt |
Asymptotic analysis of the spectral Neumann problem in thick multi-structure of type 3:1:1 / T.A. Mel'nyk // Нелинейные граничные задачи. — 2005. — Т. 15. — С. 85-98. — Бібліогр.: 12 назв. — англ. |
| work_keys_str_mv |
AT melnykta asymptoticanalysisofthespectralneumannprobleminthickmultistructureoftype311 |
| first_indexed |
2025-12-07T17:56:09Z |
| last_indexed |
2025-12-07T17:56:09Z |
| _version_ |
1850873132911427584 |