On the solvability of the nonlinear problem for elliptic-parabolic system of the equations in Hölder spaces

There is proved the existence and the uniqueness of the solution of the nonlinear H.Amann problem for the parabolic-elliptic equations for the small time in the Holder spaces, the estimates for the solution are derived, the smoothness on t of the potential φ is obtained.

Saved in:
Bibliographic Details
Published in:Нелинейные граничные задачи
Date:2004
Main Author: Bizhanova, G.I.
Format: Article
Language:English
Published: Інститут прикладної математики і механіки НАН України 2004
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/169170
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:On the solvability of the nonlinear problem for elliptic-parabolic system of the equations in Hölder spaces / G.I. Bizhanova // Нелинейные граничные задачи. — 2004. — Т. 14. — С. 16-25. — Бібліогр.: 6 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-169170
record_format dspace
spelling Bizhanova, G.I.
2020-06-07T16:19:45Z
2020-06-07T16:19:45Z
2004
On the solvability of the nonlinear problem for elliptic-parabolic system of the equations in Hölder spaces / G.I. Bizhanova // Нелинейные граничные задачи. — 2004. — Т. 14. — С. 16-25. — Бібліогр.: 6 назв. — англ.
0236-0497
https://nasplib.isofts.kiev.ua/handle/123456789/169170
There is proved the existence and the uniqueness of the solution of the nonlinear H.Amann problem for the parabolic-elliptic equations for the small time in the Holder spaces, the estimates for the solution are derived, the smoothness on t of the potential φ is obtained.
The author expresses deep gratitude to Professor Herbert Amann for his attention to this work and valuable adviccs.
en
Інститут прикладної математики і механіки НАН України
Нелинейные граничные задачи
On the solvability of the nonlinear problem for elliptic-parabolic system of the equations in Hölder spaces
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title On the solvability of the nonlinear problem for elliptic-parabolic system of the equations in Hölder spaces
spellingShingle On the solvability of the nonlinear problem for elliptic-parabolic system of the equations in Hölder spaces
Bizhanova, G.I.
title_short On the solvability of the nonlinear problem for elliptic-parabolic system of the equations in Hölder spaces
title_full On the solvability of the nonlinear problem for elliptic-parabolic system of the equations in Hölder spaces
title_fullStr On the solvability of the nonlinear problem for elliptic-parabolic system of the equations in Hölder spaces
title_full_unstemmed On the solvability of the nonlinear problem for elliptic-parabolic system of the equations in Hölder spaces
title_sort on the solvability of the nonlinear problem for elliptic-parabolic system of the equations in hölder spaces
author Bizhanova, G.I.
author_facet Bizhanova, G.I.
publishDate 2004
language English
container_title Нелинейные граничные задачи
publisher Інститут прикладної математики і механіки НАН України
format Article
description There is proved the existence and the uniqueness of the solution of the nonlinear H.Amann problem for the parabolic-elliptic equations for the small time in the Holder spaces, the estimates for the solution are derived, the smoothness on t of the potential φ is obtained.
issn 0236-0497
url https://nasplib.isofts.kiev.ua/handle/123456789/169170
citation_txt On the solvability of the nonlinear problem for elliptic-parabolic system of the equations in Hölder spaces / G.I. Bizhanova // Нелинейные граничные задачи. — 2004. — Т. 14. — С. 16-25. — Бібліогр.: 6 назв. — англ.
work_keys_str_mv AT bizhanovagi onthesolvabilityofthenonlinearproblemforellipticparabolicsystemoftheequationsinholderspaces
first_indexed 2025-11-30T13:05:17Z
last_indexed 2025-11-30T13:05:17Z
_version_ 1850857669769822208