Higher asymptotic approximations for nonlinear internal waves in fluids

Nonlinear problems of wave-packet propagation along the interface between the two fluids of different densities with taking into account the surface tension are investigated. Two problems are considered, the one for two half-spaces, the another for the layer over a half-space. Asymptotic solutions a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Нелинейные граничные задачи
Datum:2003
Hauptverfasser: Selezov, I., Avramenko, O., Kharif, Ch., Trulsen, K.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2003
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/169203
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Higher asymptotic approximations for nonlinear internal waves in fluids / I. Selezov, O. Avramenko, Ch. Kharif, K. Trulsen // Нелинейные граничные задачи. — 2003. — Т. 13. — С. 141-148. — Бібліогр.: 17 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-169203
record_format dspace
spelling Selezov, I.
Avramenko, O.
Kharif, Ch.
Trulsen, K.
2020-06-08T10:58:59Z
2020-06-08T10:58:59Z
2003
Higher asymptotic approximations for nonlinear internal waves in fluids / I. Selezov, O. Avramenko, Ch. Kharif, K. Trulsen // Нелинейные граничные задачи. — 2003. — Т. 13. — С. 141-148. — Бібліогр.: 17 назв. — англ.
0236-0497
https://nasplib.isofts.kiev.ua/handle/123456789/169203
Nonlinear problems of wave-packet propagation along the interface between the two fluids of different densities with taking into account the surface tension are investigated. Two problems are considered, the one for two half-spaces, the another for the layer over a half-space. Asymptotic solutions are developed on the basis of the method of multiple scale expansions. Unlike previous investigations dealing with only three approximations in this paper four asymptotic approximations have been developed by using symbolic algebra. The evolution equations are obtained in the form of the nonlinear higher-order Schrodinger equations. The stability of solutions is investigated. As a result, the new region of stability for capillary waves and the new region of instability for gravity waves have been discovered in the case of the layer of finite thickness unlike the case of two fluid half-spaces.
en
Інститут прикладної математики і механіки НАН України
Нелинейные граничные задачи
Higher asymptotic approximations for nonlinear internal waves in fluids
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Higher asymptotic approximations for nonlinear internal waves in fluids
spellingShingle Higher asymptotic approximations for nonlinear internal waves in fluids
Selezov, I.
Avramenko, O.
Kharif, Ch.
Trulsen, K.
title_short Higher asymptotic approximations for nonlinear internal waves in fluids
title_full Higher asymptotic approximations for nonlinear internal waves in fluids
title_fullStr Higher asymptotic approximations for nonlinear internal waves in fluids
title_full_unstemmed Higher asymptotic approximations for nonlinear internal waves in fluids
title_sort higher asymptotic approximations for nonlinear internal waves in fluids
author Selezov, I.
Avramenko, O.
Kharif, Ch.
Trulsen, K.
author_facet Selezov, I.
Avramenko, O.
Kharif, Ch.
Trulsen, K.
publishDate 2003
language English
container_title Нелинейные граничные задачи
publisher Інститут прикладної математики і механіки НАН України
format Article
description Nonlinear problems of wave-packet propagation along the interface between the two fluids of different densities with taking into account the surface tension are investigated. Two problems are considered, the one for two half-spaces, the another for the layer over a half-space. Asymptotic solutions are developed on the basis of the method of multiple scale expansions. Unlike previous investigations dealing with only three approximations in this paper four asymptotic approximations have been developed by using symbolic algebra. The evolution equations are obtained in the form of the nonlinear higher-order Schrodinger equations. The stability of solutions is investigated. As a result, the new region of stability for capillary waves and the new region of instability for gravity waves have been discovered in the case of the layer of finite thickness unlike the case of two fluid half-spaces.
issn 0236-0497
url https://nasplib.isofts.kiev.ua/handle/123456789/169203
citation_txt Higher asymptotic approximations for nonlinear internal waves in fluids / I. Selezov, O. Avramenko, Ch. Kharif, K. Trulsen // Нелинейные граничные задачи. — 2003. — Т. 13. — С. 141-148. — Бібліогр.: 17 назв. — англ.
work_keys_str_mv AT selezovi higherasymptoticapproximationsfornonlinearinternalwavesinfluids
AT avramenkoo higherasymptoticapproximationsfornonlinearinternalwavesinfluids
AT kharifch higherasymptoticapproximationsfornonlinearinternalwavesinfluids
AT trulsenk higherasymptoticapproximationsfornonlinearinternalwavesinfluids
first_indexed 2025-12-07T18:43:38Z
last_indexed 2025-12-07T18:43:38Z
_version_ 1850876120455446528