Coagulation-fragmentation models with diffusion
Consider systems of a very large number of particles, being suspended in a fluid, for example, which can diffuse and coagulate to form clusters that, in turn, can merge to form larger clusters or can break apart into smaller ones. Models of cluster growth arise in a variety of situations, for exampl...
Збережено в:
| Опубліковано в: : | Нелинейные граничные задачи |
|---|---|
| Дата: | 2000 |
| Автор: | |
| Формат: | Стаття |
| Мова: | Russian |
| Опубліковано: |
Інститут прикладної математики і механіки НАН України
2000
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/169232 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Coagulation-fragmentation models with diffusion / H. Amann // Нелинейные граничные задачи: сб. науч. тр. — 2000. — Т. 10. — С. 3-8. — Бібліогр.: 11 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-169232 |
|---|---|
| record_format |
dspace |
| spelling |
Amann, H. 2020-06-09T10:08:45Z 2020-06-09T10:08:45Z 2000 Coagulation-fragmentation models with diffusion / H. Amann // Нелинейные граничные задачи: сб. науч. тр. — 2000. — Т. 10. — С. 3-8. — Бібліогр.: 11 назв. — англ. 0236-0497 https://nasplib.isofts.kiev.ua/handle/123456789/169232 Consider systems of a very large number of particles, being suspended in a fluid, for example, which can diffuse and coagulate to form clusters that, in turn, can merge to form larger clusters or can break apart into smaller ones. Models of cluster growth arise in a variety of situations, for example in aerosol science, atmospheric physics, colloidal chemistry, or polymer science, etc. The theory originates in the work of M.V. Smoluchowski [9], [10] and has found various generalizations, extensions, and applications in the physical literature ru Інститут прикладної математики і механіки НАН України Нелинейные граничные задачи Coagulation-fragmentation models with diffusion Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Coagulation-fragmentation models with diffusion |
| spellingShingle |
Coagulation-fragmentation models with diffusion Amann, H. |
| title_short |
Coagulation-fragmentation models with diffusion |
| title_full |
Coagulation-fragmentation models with diffusion |
| title_fullStr |
Coagulation-fragmentation models with diffusion |
| title_full_unstemmed |
Coagulation-fragmentation models with diffusion |
| title_sort |
coagulation-fragmentation models with diffusion |
| author |
Amann, H. |
| author_facet |
Amann, H. |
| publishDate |
2000 |
| language |
Russian |
| container_title |
Нелинейные граничные задачи |
| publisher |
Інститут прикладної математики і механіки НАН України |
| format |
Article |
| description |
Consider systems of a very large number of particles, being suspended in a fluid, for example, which can diffuse and coagulate to form clusters that, in turn, can merge to form larger clusters or can break apart into smaller ones. Models of cluster growth arise in a variety of situations, for example in aerosol science, atmospheric physics, colloidal chemistry, or polymer science, etc. The theory originates in the work of M.V. Smoluchowski [9], [10] and has found various generalizations, extensions, and applications in the physical literature
|
| issn |
0236-0497 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/169232 |
| citation_txt |
Coagulation-fragmentation models with diffusion / H. Amann // Нелинейные граничные задачи: сб. науч. тр. — 2000. — Т. 10. — С. 3-8. — Бібліогр.: 11 назв. — англ. |
| work_keys_str_mv |
AT amannh coagulationfragmentationmodelswithdiffusion |
| first_indexed |
2025-12-07T18:46:47Z |
| last_indexed |
2025-12-07T18:46:47Z |
| _version_ |
1850876318427643904 |