On boundary value problems for partial differential equations of the form ℒ⁺ A(u,ℒu) = f
Generalizedly posed boundary value problems for equations of the types ℒ⁺ Aℒu = f and ℒ⁺A(u, ℒ u) = f, where ℒ is some general differential operation with smooth matrix coefficients in a general bounded domain Ω and A(∙, ∙) is some continuous operator in the vector spaces L₂(Ω), are introdused and s...
Saved in:
| Published in: | Нелинейные граничные задачи |
|---|---|
| Date: | 2000 |
| Main Author: | |
| Format: | Article |
| Language: | English |
| Published: |
Інститут прикладної математики і механіки НАН України
2000
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/169238 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | On boundary value problems for partial differential equations of the form ℒ⁺ A(u,ℒu) = f / V.P. Burskii // Нелинейные граничные задачи: сб. науч. тр. — 2000. — Т. 10. — С. 50-54. — Бібліогр.: 7 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-169238 |
|---|---|
| record_format |
dspace |
| spelling |
Burskii, V.P. 2020-06-09T10:37:57Z 2020-06-09T10:37:57Z 2000 On boundary value problems for partial differential equations of the form ℒ⁺ A(u,ℒu) = f / V.P. Burskii // Нелинейные граничные задачи: сб. науч. тр. — 2000. — Т. 10. — С. 50-54. — Бібліогр.: 7 назв. — англ. 0236-0497 2000 Mathematics Subject Classification. 35D05, 35G30 https://nasplib.isofts.kiev.ua/handle/123456789/169238 Generalizedly posed boundary value problems for equations of the types ℒ⁺ Aℒu = f and ℒ⁺A(u, ℒ u) = f, where ℒ is some general differential operation with smooth matrix coefficients in a general bounded domain Ω and A(∙, ∙) is some continuous operator in the vector spaces L₂(Ω), are introdused and studied. en Інститут прикладної математики і механіки НАН України Нелинейные граничные задачи On boundary value problems for partial differential equations of the form ℒ⁺ A(u,ℒu) = f Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
On boundary value problems for partial differential equations of the form ℒ⁺ A(u,ℒu) = f |
| spellingShingle |
On boundary value problems for partial differential equations of the form ℒ⁺ A(u,ℒu) = f Burskii, V.P. |
| title_short |
On boundary value problems for partial differential equations of the form ℒ⁺ A(u,ℒu) = f |
| title_full |
On boundary value problems for partial differential equations of the form ℒ⁺ A(u,ℒu) = f |
| title_fullStr |
On boundary value problems for partial differential equations of the form ℒ⁺ A(u,ℒu) = f |
| title_full_unstemmed |
On boundary value problems for partial differential equations of the form ℒ⁺ A(u,ℒu) = f |
| title_sort |
on boundary value problems for partial differential equations of the form ℒ⁺ a(u,ℒu) = f |
| author |
Burskii, V.P. |
| author_facet |
Burskii, V.P. |
| publishDate |
2000 |
| language |
English |
| container_title |
Нелинейные граничные задачи |
| publisher |
Інститут прикладної математики і механіки НАН України |
| format |
Article |
| description |
Generalizedly posed boundary value problems for equations of the types ℒ⁺ Aℒu = f and ℒ⁺A(u, ℒ u) = f, where ℒ is some general differential operation with smooth matrix coefficients in a general bounded domain Ω and A(∙, ∙) is some continuous operator in the vector spaces L₂(Ω), are introdused and studied.
|
| issn |
0236-0497 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/169238 |
| citation_txt |
On boundary value problems for partial differential equations of the form ℒ⁺ A(u,ℒu) = f / V.P. Burskii // Нелинейные граничные задачи: сб. науч. тр. — 2000. — Т. 10. — С. 50-54. — Бібліогр.: 7 назв. — англ. |
| work_keys_str_mv |
AT burskiivp onboundaryvalueproblemsforpartialdifferentialequationsoftheformlauluf |
| first_indexed |
2025-12-07T13:21:11Z |
| last_indexed |
2025-12-07T13:21:11Z |
| _version_ |
1850855833645088768 |