Local solvability of fully nonlinear parabolic problems of higher order

The paper is devoted to reduction of fully nonlinear parabolic problems of high order to operator equations involving operator satisfying (S₊) condition. The topological methods could be used to investigate solvability of such operator equations. The theorems of uniqueness and local existence for so...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Нелинейные граничные задачи
Datum:2000
1. Verfasser: Romanenko, I.B.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2000
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/169252
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Local solvability of fully nonlinear parabolic problems of higher order / I.B. Romanenko // Нелинейные граничные задачи: сб. науч. тр. — 2000. — Т. 10. — С. 156-161. — Бібліогр.: 3 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-169252
record_format dspace
spelling Romanenko, I.B.
2020-06-09T12:26:40Z
2020-06-09T12:26:40Z
2000
Local solvability of fully nonlinear parabolic problems of higher order / I.B. Romanenko // Нелинейные граничные задачи: сб. науч. тр. — 2000. — Т. 10. — С. 156-161. — Бібліогр.: 3 назв. — англ.
0236-0497
https://nasplib.isofts.kiev.ua/handle/123456789/169252
The paper is devoted to reduction of fully nonlinear parabolic problems of high order to operator equations involving operator satisfying (S₊) condition. The topological methods could be used to investigate solvability of such operator equations. The theorems of uniqueness and local existence for solution of boundary value problem, proved by topological approach are formulated in the paper. The results formulated are generalizations of analogous facts proved in [1].
en
Інститут прикладної математики і механіки НАН України
Нелинейные граничные задачи
Local solvability of fully nonlinear parabolic problems of higher order
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Local solvability of fully nonlinear parabolic problems of higher order
spellingShingle Local solvability of fully nonlinear parabolic problems of higher order
Romanenko, I.B.
title_short Local solvability of fully nonlinear parabolic problems of higher order
title_full Local solvability of fully nonlinear parabolic problems of higher order
title_fullStr Local solvability of fully nonlinear parabolic problems of higher order
title_full_unstemmed Local solvability of fully nonlinear parabolic problems of higher order
title_sort local solvability of fully nonlinear parabolic problems of higher order
author Romanenko, I.B.
author_facet Romanenko, I.B.
publishDate 2000
language English
container_title Нелинейные граничные задачи
publisher Інститут прикладної математики і механіки НАН України
format Article
description The paper is devoted to reduction of fully nonlinear parabolic problems of high order to operator equations involving operator satisfying (S₊) condition. The topological methods could be used to investigate solvability of such operator equations. The theorems of uniqueness and local existence for solution of boundary value problem, proved by topological approach are formulated in the paper. The results formulated are generalizations of analogous facts proved in [1].
issn 0236-0497
url https://nasplib.isofts.kiev.ua/handle/123456789/169252
fulltext
citation_txt Local solvability of fully nonlinear parabolic problems of higher order / I.B. Romanenko // Нелинейные граничные задачи: сб. науч. тр. — 2000. — Т. 10. — С. 156-161. — Бібліогр.: 3 назв. — англ.
work_keys_str_mv AT romanenkoib localsolvabilityoffullynonlinearparabolicproblemsofhigherorder
first_indexed 2025-11-25T20:37:26Z
last_indexed 2025-11-25T20:37:26Z
_version_ 1850524439184146432