Bifurcation and stability for diffusive logistic equations with nonlinear boundary conditions
In this note we study a semilinear elliptic boundary value problem of one parameter dependence which arises in population genetics, having nonlinear boundary conditions. For some cases of sign indefinite weights, we investigate the existence and asymptotic behavior of the minimal positive solution....
Saved in:
| Published in: | Нелинейные граничные задачи |
|---|---|
| Date: | 2000 |
| Main Author: | |
| Format: | Article |
| Language: | English |
| Published: |
Інститут прикладної математики і механіки НАН України
2000
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/169257 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Bifurcation and stability for diffusive logistic equations with nonlinear boundary conditions / K. Umezu // Нелинейные граничные задачи: сб. науч. тр. — 2000. — Т. 10. — С. 193-198. — Бібліогр.: 19 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Summary: | In this note we study a semilinear elliptic boundary value problem of one parameter dependence which arises in population genetics, having nonlinear boundary conditions. For some cases of sign indefinite weights, we investigate the existence and asymptotic behavior of the minimal positive solution. The analysis uses the local bifurcation theory from simple eigenvalues, super-sub-solution method and variational technique.
|
|---|---|
| ISSN: | 0236-0497 |