Bifurcation and stability for diffusive logistic equations with nonlinear boundary conditions

In this note we study a semilinear elliptic boundary value problem of one parameter dependence which arises in population genetics, having nonlinear boundary conditions. For some cases of sign indefinite weights, we investigate the existence and asymptotic behavior of the minimal positive solution....

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Нелинейные граничные задачи
Дата:2000
Автор: Umezu, K.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2000
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/169257
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Bifurcation and stability for diffusive logistic equations with nonlinear boundary conditions / K. Umezu // Нелинейные граничные задачи: сб. науч. тр. — 2000. — Т. 10. — С. 193-198. — Бібліогр.: 19 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-169257
record_format dspace
spelling Umezu, K.
2020-06-09T12:33:44Z
2020-06-09T12:33:44Z
2000
Bifurcation and stability for diffusive logistic equations with nonlinear boundary conditions / K. Umezu // Нелинейные граничные задачи: сб. науч. тр. — 2000. — Т. 10. — С. 193-198. — Бібліогр.: 19 назв. — англ.
0236-0497
https://nasplib.isofts.kiev.ua/handle/123456789/169257
In this note we study a semilinear elliptic boundary value problem of one parameter dependence which arises in population genetics, having nonlinear boundary conditions. For some cases of sign indefinite weights, we investigate the existence and asymptotic behavior of the minimal positive solution. The analysis uses the local bifurcation theory from simple eigenvalues, super-sub-solution method and variational technique.
en
Інститут прикладної математики і механіки НАН України
Нелинейные граничные задачи
Bifurcation and stability for diffusive logistic equations with nonlinear boundary conditions
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Bifurcation and stability for diffusive logistic equations with nonlinear boundary conditions
spellingShingle Bifurcation and stability for diffusive logistic equations with nonlinear boundary conditions
Umezu, K.
title_short Bifurcation and stability for diffusive logistic equations with nonlinear boundary conditions
title_full Bifurcation and stability for diffusive logistic equations with nonlinear boundary conditions
title_fullStr Bifurcation and stability for diffusive logistic equations with nonlinear boundary conditions
title_full_unstemmed Bifurcation and stability for diffusive logistic equations with nonlinear boundary conditions
title_sort bifurcation and stability for diffusive logistic equations with nonlinear boundary conditions
author Umezu, K.
author_facet Umezu, K.
publishDate 2000
language English
container_title Нелинейные граничные задачи
publisher Інститут прикладної математики і механіки НАН України
format Article
description In this note we study a semilinear elliptic boundary value problem of one parameter dependence which arises in population genetics, having nonlinear boundary conditions. For some cases of sign indefinite weights, we investigate the existence and asymptotic behavior of the minimal positive solution. The analysis uses the local bifurcation theory from simple eigenvalues, super-sub-solution method and variational technique.
issn 0236-0497
url https://nasplib.isofts.kiev.ua/handle/123456789/169257
fulltext
citation_txt Bifurcation and stability for diffusive logistic equations with nonlinear boundary conditions / K. Umezu // Нелинейные граничные задачи: сб. науч. тр. — 2000. — Т. 10. — С. 193-198. — Бібліогр.: 19 назв. — англ.
work_keys_str_mv AT umezuk bifurcationandstabilityfordiffusivelogisticequationswithnonlinearboundaryconditions
first_indexed 2025-11-26T03:41:52Z
last_indexed 2025-11-26T03:41:52Z
_version_ 1850610424402149376