Bifurcation and stability for diffusive logistic equations with nonlinear boundary conditions
In this note we study a semilinear elliptic boundary value problem of one parameter dependence which arises in population genetics, having nonlinear boundary conditions. For some cases of sign indefinite weights, we investigate the existence and asymptotic behavior of the minimal positive solution....
Збережено в:
| Опубліковано в: : | Нелинейные граничные задачи |
|---|---|
| Дата: | 2000 |
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут прикладної математики і механіки НАН України
2000
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/169257 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Bifurcation and stability for diffusive logistic equations with nonlinear boundary conditions / K. Umezu // Нелинейные граничные задачи: сб. науч. тр. — 2000. — Т. 10. — С. 193-198. — Бібліогр.: 19 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-169257 |
|---|---|
| record_format |
dspace |
| spelling |
Umezu, K. 2020-06-09T12:33:44Z 2020-06-09T12:33:44Z 2000 Bifurcation and stability for diffusive logistic equations with nonlinear boundary conditions / K. Umezu // Нелинейные граничные задачи: сб. науч. тр. — 2000. — Т. 10. — С. 193-198. — Бібліогр.: 19 назв. — англ. 0236-0497 https://nasplib.isofts.kiev.ua/handle/123456789/169257 In this note we study a semilinear elliptic boundary value problem of one parameter dependence which arises in population genetics, having nonlinear boundary conditions. For some cases of sign indefinite weights, we investigate the existence and asymptotic behavior of the minimal positive solution. The analysis uses the local bifurcation theory from simple eigenvalues, super-sub-solution method and variational technique. en Інститут прикладної математики і механіки НАН України Нелинейные граничные задачи Bifurcation and stability for diffusive logistic equations with nonlinear boundary conditions Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Bifurcation and stability for diffusive logistic equations with nonlinear boundary conditions |
| spellingShingle |
Bifurcation and stability for diffusive logistic equations with nonlinear boundary conditions Umezu, K. |
| title_short |
Bifurcation and stability for diffusive logistic equations with nonlinear boundary conditions |
| title_full |
Bifurcation and stability for diffusive logistic equations with nonlinear boundary conditions |
| title_fullStr |
Bifurcation and stability for diffusive logistic equations with nonlinear boundary conditions |
| title_full_unstemmed |
Bifurcation and stability for diffusive logistic equations with nonlinear boundary conditions |
| title_sort |
bifurcation and stability for diffusive logistic equations with nonlinear boundary conditions |
| author |
Umezu, K. |
| author_facet |
Umezu, K. |
| publishDate |
2000 |
| language |
English |
| container_title |
Нелинейные граничные задачи |
| publisher |
Інститут прикладної математики і механіки НАН України |
| format |
Article |
| description |
In this note we study a semilinear elliptic boundary value problem of one parameter dependence which arises in population genetics, having nonlinear boundary conditions. For some cases of sign indefinite weights, we investigate the existence and asymptotic behavior of the minimal positive solution. The analysis uses the local bifurcation theory from simple eigenvalues, super-sub-solution method and variational technique.
|
| issn |
0236-0497 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/169257 |
| fulltext |
|
| citation_txt |
Bifurcation and stability for diffusive logistic equations with nonlinear boundary conditions / K. Umezu // Нелинейные граничные задачи: сб. науч. тр. — 2000. — Т. 10. — С. 193-198. — Бібліогр.: 19 назв. — англ. |
| work_keys_str_mv |
AT umezuk bifurcationandstabilityfordiffusivelogisticequationswithnonlinearboundaryconditions |
| first_indexed |
2025-11-26T03:41:52Z |
| last_indexed |
2025-11-26T03:41:52Z |
| _version_ |
1850610424402149376 |