Attractors of reaction-diffusion equations with nonmonotone nonlinearity

In this paper we study the existence of global compact attractors for nonlinear parabolic equations of reaction-diffusion type. The studied equations are generated by a difference of subdifferential maps and are not assumed to have a unique solution for each initial state. Applications are given to...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Нелинейные граничные задачи
Дата:2000
Автор: Valero, J.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2000
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/169258
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Attractors of reaction-diffusion equations with nonmonotone nonlinearity / J. Valero // Нелинейные граничные задачи: сб. науч. тр. — 2000. — Т. 10. — С. 199-203. — Бібліогр.: 7 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-169258
record_format dspace
spelling Valero, J.
2020-06-09T12:47:21Z
2020-06-09T12:47:21Z
2000
Attractors of reaction-diffusion equations with nonmonotone nonlinearity / J. Valero // Нелинейные граничные задачи: сб. науч. тр. — 2000. — Т. 10. — С. 199-203. — Бібліогр.: 7 назв. — англ.
0236-0497
2000 Mathematics Subject Classification. 58F39, 35B40, 35K55, 35K57
https://nasplib.isofts.kiev.ua/handle/123456789/169258
In this paper we study the existence of global compact attractors for nonlinear parabolic equations of reaction-diffusion type. The studied equations are generated by a difference of subdifferential maps and are not assumed to have a unique solution for each initial state. Applications are given to inclusions modelling combustion in porous media and processes of transmission of electrical impulses in nerve axons.
I would like to thank Professor V.S. Melnik for his valuable help and support in this work. This work has been supported by PB-2-FS-97 grant (Fundacion Seneca (Comunidad Autonoma de Murcia)).
en
Інститут прикладної математики і механіки НАН України
Нелинейные граничные задачи
Attractors of reaction-diffusion equations with nonmonotone nonlinearity
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Attractors of reaction-diffusion equations with nonmonotone nonlinearity
spellingShingle Attractors of reaction-diffusion equations with nonmonotone nonlinearity
Valero, J.
title_short Attractors of reaction-diffusion equations with nonmonotone nonlinearity
title_full Attractors of reaction-diffusion equations with nonmonotone nonlinearity
title_fullStr Attractors of reaction-diffusion equations with nonmonotone nonlinearity
title_full_unstemmed Attractors of reaction-diffusion equations with nonmonotone nonlinearity
title_sort attractors of reaction-diffusion equations with nonmonotone nonlinearity
author Valero, J.
author_facet Valero, J.
publishDate 2000
language English
container_title Нелинейные граничные задачи
publisher Інститут прикладної математики і механіки НАН України
format Article
description In this paper we study the existence of global compact attractors for nonlinear parabolic equations of reaction-diffusion type. The studied equations are generated by a difference of subdifferential maps and are not assumed to have a unique solution for each initial state. Applications are given to inclusions modelling combustion in porous media and processes of transmission of electrical impulses in nerve axons.
issn 0236-0497
url https://nasplib.isofts.kiev.ua/handle/123456789/169258
citation_txt Attractors of reaction-diffusion equations with nonmonotone nonlinearity / J. Valero // Нелинейные граничные задачи: сб. науч. тр. — 2000. — Т. 10. — С. 199-203. — Бібліогр.: 7 назв. — англ.
work_keys_str_mv AT valeroj attractorsofreactiondiffusionequationswithnonmonotonenonlinearity
first_indexed 2025-12-01T11:09:48Z
last_indexed 2025-12-01T11:09:48Z
_version_ 1850860042189799424