Attractors of reaction-diffusion equations with nonmonotone nonlinearity
In this paper we study the existence of global compact attractors for nonlinear parabolic equations of reaction-diffusion type. The studied equations are generated by a difference of subdifferential maps and are not assumed to have a unique solution for each initial state. Applications are given to...
Saved in:
| Date: | 2000 |
|---|---|
| Main Author: | Valero, J. |
| Format: | Article |
| Language: | English |
| Published: |
Інститут прикладної математики і механіки НАН України
2000
|
| Series: | Нелинейные граничные задачи |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/169258 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Attractors of reaction-diffusion equations with nonmonotone nonlinearity / J. Valero // Нелинейные граничные задачи: сб. науч. тр. — 2000. — Т. 10. — С. 199-203. — Бібліогр.: 7 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
Group classification of systems of nonlinear reaction-diffusion equations with triangular diffusion matrix
by: Nikitin, A.G.
Published: (2007) -
Nonclassical symmetries of a system of nonlinear reaction-diffusion equations
by: T. A. Barannyk
Published: (2017) -
Conditional Symmetry of a System of Nonlinear Reaction-Diffusion Equations
by: T. A. Barannyk
Published: (2015) -
The classification of the Galilei-invariant systems of nonlinear reaction-diffusion equations
by: T. A. Barannyk
Published: (2015) -
Nonmonotonicity of kneading invariants in the family of kinked maps
by: Volkova, O.Yu.
Published: (2005)