Palais-Smale condition for chiral fields

The well known condition of compactness entered by R. Palais and S. Smale| - condition (C) - can be proved traditionally in rare cases, especially if it is considered the problem about critical points for functional f(u), u ∊ E on the surface {u ∊ E : F(u) = 0} with essentially nonlinear infinite di...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Нелинейные граничные задачи
Дата:1999
Автор: Suvorov, S.G.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 1999
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/169284
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Palais-Smale condition for chiral fields / S.G. Suvorov // Нелинейные граничные задачи: сб. науч. тр. — 1999. — Т. 9. — С. 130-134. — Бібліогр.: 7 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-169284
record_format dspace
spelling Suvorov, S.G.
2020-06-09T16:41:31Z
2020-06-09T16:41:31Z
1999
Palais-Smale condition for chiral fields / S.G. Suvorov // Нелинейные граничные задачи: сб. науч. тр. — 1999. — Т. 9. — С. 130-134. — Бібліогр.: 7 назв. — англ.
0236-0497
https://nasplib.isofts.kiev.ua/handle/123456789/169284
The well known condition of compactness entered by R. Palais and S. Smale| - condition (C) - can be proved traditionally in rare cases, especially if it is considered the problem about critical points for functional f(u), u ∊ E on the surface {u ∊ E : F(u) = 0} with essentially nonlinear infinite dimensional F : E → E₁. However it is possible to obtain the proof by consideration of special compactifications for bounded sets from E, and subsequent testing that the limit points of any pseudocritical sequence lie not in remainder above E, but in most E. Main application is a problem for spherical fields in the bounded domains.
en
Інститут прикладної математики і механіки НАН України
Нелинейные граничные задачи
Palais-Smale condition for chiral fields
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Palais-Smale condition for chiral fields
spellingShingle Palais-Smale condition for chiral fields
Suvorov, S.G.
title_short Palais-Smale condition for chiral fields
title_full Palais-Smale condition for chiral fields
title_fullStr Palais-Smale condition for chiral fields
title_full_unstemmed Palais-Smale condition for chiral fields
title_sort palais-smale condition for chiral fields
author Suvorov, S.G.
author_facet Suvorov, S.G.
publishDate 1999
language English
container_title Нелинейные граничные задачи
publisher Інститут прикладної математики і механіки НАН України
format Article
description The well known condition of compactness entered by R. Palais and S. Smale| - condition (C) - can be proved traditionally in rare cases, especially if it is considered the problem about critical points for functional f(u), u ∊ E on the surface {u ∊ E : F(u) = 0} with essentially nonlinear infinite dimensional F : E → E₁. However it is possible to obtain the proof by consideration of special compactifications for bounded sets from E, and subsequent testing that the limit points of any pseudocritical sequence lie not in remainder above E, but in most E. Main application is a problem for spherical fields in the bounded domains.
issn 0236-0497
url https://nasplib.isofts.kiev.ua/handle/123456789/169284
citation_txt Palais-Smale condition for chiral fields / S.G. Suvorov // Нелинейные граничные задачи: сб. науч. тр. — 1999. — Т. 9. — С. 130-134. — Бібліогр.: 7 назв. — англ.
work_keys_str_mv AT suvorovsg palaissmaleconditionforchiralfields
first_indexed 2025-12-01T18:28:34Z
last_indexed 2025-12-01T18:28:34Z
_version_ 1850860814713487360