Palais-Smale condition for chiral fields
The well known condition of compactness entered by R. Palais and S. Smale| - condition (C) - can be proved traditionally in rare cases, especially if it is considered the problem about critical points for functional f(u), u ∊ E on the surface {u ∊ E : F(u) = 0} with essentially nonlinear infinite di...
Збережено в:
| Опубліковано в: : | Нелинейные граничные задачи |
|---|---|
| Дата: | 1999 |
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут прикладної математики і механіки НАН України
1999
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/169284 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Palais-Smale condition for chiral fields / S.G. Suvorov // Нелинейные граничные задачи: сб. науч. тр. — 1999. — Т. 9. — С. 130-134. — Бібліогр.: 7 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-169284 |
|---|---|
| record_format |
dspace |
| spelling |
Suvorov, S.G. 2020-06-09T16:41:31Z 2020-06-09T16:41:31Z 1999 Palais-Smale condition for chiral fields / S.G. Suvorov // Нелинейные граничные задачи: сб. науч. тр. — 1999. — Т. 9. — С. 130-134. — Бібліогр.: 7 назв. — англ. 0236-0497 https://nasplib.isofts.kiev.ua/handle/123456789/169284 The well known condition of compactness entered by R. Palais and S. Smale| - condition (C) - can be proved traditionally in rare cases, especially if it is considered the problem about critical points for functional f(u), u ∊ E on the surface {u ∊ E : F(u) = 0} with essentially nonlinear infinite dimensional F : E → E₁. However it is possible to obtain the proof by consideration of special compactifications for bounded sets from E, and subsequent testing that the limit points of any pseudocritical sequence lie not in remainder above E, but in most E. Main application is a problem for spherical fields in the bounded domains. en Інститут прикладної математики і механіки НАН України Нелинейные граничные задачи Palais-Smale condition for chiral fields Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Palais-Smale condition for chiral fields |
| spellingShingle |
Palais-Smale condition for chiral fields Suvorov, S.G. |
| title_short |
Palais-Smale condition for chiral fields |
| title_full |
Palais-Smale condition for chiral fields |
| title_fullStr |
Palais-Smale condition for chiral fields |
| title_full_unstemmed |
Palais-Smale condition for chiral fields |
| title_sort |
palais-smale condition for chiral fields |
| author |
Suvorov, S.G. |
| author_facet |
Suvorov, S.G. |
| publishDate |
1999 |
| language |
English |
| container_title |
Нелинейные граничные задачи |
| publisher |
Інститут прикладної математики і механіки НАН України |
| format |
Article |
| description |
The well known condition of compactness entered by R. Palais and S. Smale| - condition (C) - can be proved traditionally in rare cases, especially if it is considered the problem about critical points for functional f(u), u ∊ E on the surface {u ∊ E : F(u) = 0} with essentially nonlinear infinite dimensional F : E → E₁. However it is possible to obtain the proof by consideration of special compactifications for bounded sets from E, and subsequent testing that the limit points of any pseudocritical sequence lie not in remainder above E, but in most E. Main application is a problem for spherical fields in the bounded domains.
|
| issn |
0236-0497 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/169284 |
| citation_txt |
Palais-Smale condition for chiral fields / S.G. Suvorov // Нелинейные граничные задачи: сб. науч. тр. — 1999. — Т. 9. — С. 130-134. — Бібліогр.: 7 назв. — англ. |
| work_keys_str_mv |
AT suvorovsg palaissmaleconditionforchiralfields |
| first_indexed |
2025-12-01T18:28:34Z |
| last_indexed |
2025-12-01T18:28:34Z |
| _version_ |
1850860814713487360 |