Self-stochasticity in deterministic boundary value problems

This paper presents the experience of applying dynamical systems theory to an investigation into nonlinear boundary value problems for partial differential equations (PDE for short) in the case that their solutions become chaotic with time. To describe the long time behavior of such solutions, the c...

Full description

Saved in:
Bibliographic Details
Published in:Нелинейные граничные задачи
Date:1999
Main Authors: Romanenko, E.Yu., Sharkovsky, A.N., Vereikina, M.B.
Format: Article
Language:English
Published: Інститут прикладної математики і механіки НАН України 1999
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/169290
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Self-stochasticity in deterministic boundary value problems / E.Yu. Romanenko, A.N. Sharkovsky, M.B. Vereikina // Нелинейные граничные задачи: сб. науч. тр. — 1999. — Т. 9. — С. 174-184. — Бібліогр.: 14 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-169290
record_format dspace
spelling Romanenko, E.Yu.
Sharkovsky, A.N.
Vereikina, M.B.
2020-06-09T16:48:28Z
2020-06-09T16:48:28Z
1999
Self-stochasticity in deterministic boundary value problems / E.Yu. Romanenko, A.N. Sharkovsky, M.B. Vereikina // Нелинейные граничные задачи: сб. науч. тр. — 1999. — Т. 9. — С. 174-184. — Бібліогр.: 14 назв. — англ.
0236-0497
https://nasplib.isofts.kiev.ua/handle/123456789/169290
This paper presents the experience of applying dynamical systems theory to an investigation into nonlinear boundary value problems for partial differential equations (PDE for short) in the case that their solutions become chaotic with time. To describe the long time behavior of such solutions, the concept of self-stochasticity had been suggested. The results reported in this work are concerned linear systems of PDE with nonlinear boundary conditions; general ideas on the manner in which chaotic solutions may be described are set forth by the example of several simplest boundary value problems.
en
Інститут прикладної математики і механіки НАН України
Нелинейные граничные задачи
Self-stochasticity in deterministic boundary value problems
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Self-stochasticity in deterministic boundary value problems
spellingShingle Self-stochasticity in deterministic boundary value problems
Romanenko, E.Yu.
Sharkovsky, A.N.
Vereikina, M.B.
title_short Self-stochasticity in deterministic boundary value problems
title_full Self-stochasticity in deterministic boundary value problems
title_fullStr Self-stochasticity in deterministic boundary value problems
title_full_unstemmed Self-stochasticity in deterministic boundary value problems
title_sort self-stochasticity in deterministic boundary value problems
author Romanenko, E.Yu.
Sharkovsky, A.N.
Vereikina, M.B.
author_facet Romanenko, E.Yu.
Sharkovsky, A.N.
Vereikina, M.B.
publishDate 1999
language English
container_title Нелинейные граничные задачи
publisher Інститут прикладної математики і механіки НАН України
format Article
description This paper presents the experience of applying dynamical systems theory to an investigation into nonlinear boundary value problems for partial differential equations (PDE for short) in the case that their solutions become chaotic with time. To describe the long time behavior of such solutions, the concept of self-stochasticity had been suggested. The results reported in this work are concerned linear systems of PDE with nonlinear boundary conditions; general ideas on the manner in which chaotic solutions may be described are set forth by the example of several simplest boundary value problems.
issn 0236-0497
url https://nasplib.isofts.kiev.ua/handle/123456789/169290
citation_txt Self-stochasticity in deterministic boundary value problems / E.Yu. Romanenko, A.N. Sharkovsky, M.B. Vereikina // Нелинейные граничные задачи: сб. науч. тр. — 1999. — Т. 9. — С. 174-184. — Бібліогр.: 14 назв. — англ.
work_keys_str_mv AT romanenkoeyu selfstochasticityindeterministicboundaryvalueproblems
AT sharkovskyan selfstochasticityindeterministicboundaryvalueproblems
AT vereikinamb selfstochasticityindeterministicboundaryvalueproblems
first_indexed 2025-12-01T00:34:30Z
last_indexed 2025-12-01T00:34:30Z
_version_ 1850858870023389184