An operator approach to indefinite Stieltjes moment problem

In the present paper we solve the indefinite Stieltjes moment problem MPkκ(s) within the M.G. Krein theory of u-resolvent matrices applied to a Pontryagin space symmetric operator A[0,N] generated by J[0,N]. The u-resolvent matrices of the operator A[0,N] are calculated in terms of generalized Stiel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Український математичний вісник
Datum:2017
Hauptverfasser: Derkach, V.A., Kovalyov, I.M.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2017
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/169313
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:An operator approach to indefinite Stieltjes moment problem / V.A. Derkach, I.M. Kovalyov // Український математичний вісник. — 2017. — Т. 14, № 1. — С. 42-85. — Бібліогр.: 50 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:In the present paper we solve the indefinite Stieltjes moment problem MPkκ(s) within the M.G. Krein theory of u-resolvent matrices applied to a Pontryagin space symmetric operator A[0,N] generated by J[0,N]. The u-resolvent matrices of the operator A[0,N] are calculated in terms of generalized Stieltjes polynomials using the boundary triple’s technique. Criterions for the problem MPkκ(s) to be solvable and indeterminate are found. Explicit formulae for Pade approximants for generalized Stieltjes fraction in terms of generalized Stieltjes polynomials are also presented.
ISSN:1810-3200