On the Cauchy theorem for hyperholomorphic functions of spatial variable
We proved a theorem about the integral of quaternionic-differentiable functions of spatial variable over the closed surface. It is an analog of the Cauchy theorem from complex analysis.
Saved in:
| Date: | 2017 |
|---|---|
| Main Author: | Herus, O.F. |
| Format: | Article |
| Language: | English |
| Published: |
Інститут прикладної математики і механіки НАН України
2017
|
| Series: | Український математичний вісник |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/169319 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | On the Cauchy theorem for hyperholomorphic functions of spatial variable / O.F. Herus // Український математичний вісник. — 2017. — Т. 14, № 2. — С. 153-160. — Бібліогр.: 15 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
On the Cauchy theorem for hyperholomorphic functions of spatial variable
by: O. F. Herus
Published: (2017) -
Properties of fundamental solutions, theorems on integral representations of solutions and correct solvability of the Cauchy problem for ultraparabolic Kolmogorov-type equations with two groups of spatial variables of degeneration
by: S. D. Ivasyshen, et al.
Published: (2018) -
Classical fundamental solutions of the Cauchy problem for ultraparabolic Kolmogorov type equations with two groups of spatial variables
by: S. D. Ivasyshen, et al.
Published: (2016) -
On classical fundamental solutions of the Cauchy problem for ultraparabolic equations of Kolmogorov type with two groups of spatial variables
by: S. D. Ivasyshen, et al.
Published: (2016) -
Estimate of the modulus of continuity of boundary values of quaternion Cauchy-type integral
by: O. F. Herus
Published: (2015)