Pseudospectral functions of various dimensions for symmetric systems with the maximal deficiency index
We consider first-order symmetric system Jy′ −A(t)y = λ∆(t)y with n×n-matrix coefficients defined on an interval [a, b) with the regular endpoint a. It is assumed that the deficiency indices N± of the system satisfies N− ≤ N+ = n. The main result is a parametrization of all pseudospectral functions...
Збережено в:
| Опубліковано в: : | Український математичний вісник |
|---|---|
| Дата: | 2017 |
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут прикладної математики і механіки НАН України
2017
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/169323 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Pseudospectral functions of various dimensions for symmetric systems with the maximal deficiency index / V.I. Mogilevskii // Український математичний вісник. — 2017. — Т. 14, № 2. — С. 220-264. — Бібліогр.: 38 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-169323 |
|---|---|
| record_format |
dspace |
| spelling |
Mogilevskii, V.I. 2020-06-10T15:25:47Z 2020-06-10T15:25:47Z 2017 Pseudospectral functions of various dimensions for symmetric systems with the maximal deficiency index / V.I. Mogilevskii // Український математичний вісник. — 2017. — Т. 14, № 2. — С. 220-264. — Бібліогр.: 38 назв. — англ. 1810-3200 2010 MSC. 34L10,47A06,47E05 https://nasplib.isofts.kiev.ua/handle/123456789/169323 We consider first-order symmetric system Jy′ −A(t)y = λ∆(t)y with n×n-matrix coefficients defined on an interval [a, b) with the regular endpoint a. It is assumed that the deficiency indices N± of the system satisfies N− ≤ N+ = n. The main result is a parametrization of all pseudospectral functions σ(•) of any possible dimension nσ ≤ n by means of a Nevanlinna parameter τ = {C₀ (λ), C₁ (λ)}. en Інститут прикладної математики і механіки НАН України Український математичний вісник Pseudospectral functions of various dimensions for symmetric systems with the maximal deficiency index Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Pseudospectral functions of various dimensions for symmetric systems with the maximal deficiency index |
| spellingShingle |
Pseudospectral functions of various dimensions for symmetric systems with the maximal deficiency index Mogilevskii, V.I. |
| title_short |
Pseudospectral functions of various dimensions for symmetric systems with the maximal deficiency index |
| title_full |
Pseudospectral functions of various dimensions for symmetric systems with the maximal deficiency index |
| title_fullStr |
Pseudospectral functions of various dimensions for symmetric systems with the maximal deficiency index |
| title_full_unstemmed |
Pseudospectral functions of various dimensions for symmetric systems with the maximal deficiency index |
| title_sort |
pseudospectral functions of various dimensions for symmetric systems with the maximal deficiency index |
| author |
Mogilevskii, V.I. |
| author_facet |
Mogilevskii, V.I. |
| publishDate |
2017 |
| language |
English |
| container_title |
Український математичний вісник |
| publisher |
Інститут прикладної математики і механіки НАН України |
| format |
Article |
| description |
We consider first-order symmetric system Jy′ −A(t)y = λ∆(t)y with n×n-matrix coefficients defined on an interval [a, b) with the regular endpoint a. It is assumed that the deficiency indices N± of the system satisfies N− ≤ N+ = n. The main result is a parametrization of all pseudospectral functions σ(•) of any possible dimension nσ ≤ n by means of a Nevanlinna parameter τ = {C₀ (λ), C₁ (λ)}.
|
| issn |
1810-3200 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/169323 |
| citation_txt |
Pseudospectral functions of various dimensions for symmetric systems with the maximal deficiency index / V.I. Mogilevskii // Український математичний вісник. — 2017. — Т. 14, № 2. — С. 220-264. — Бібліогр.: 38 назв. — англ. |
| work_keys_str_mv |
AT mogilevskiivi pseudospectralfunctionsofvariousdimensionsforsymmetricsystemswiththemaximaldeficiencyindex |
| first_indexed |
2025-12-07T18:13:15Z |
| last_indexed |
2025-12-07T18:13:15Z |
| _version_ |
1850874208148520960 |