Convolution equations and mean value theorems for solutions of linear elliptic equations with constant coefficients in the complex plane
In terms of the Bessel functions we characterize smooth solutions of some convolution equations in the complex plane and prove a two-radius theorem for solutions of homogeneous linear elliptic equations with constant coefficients whose left hand side is representable in the form of the product of so...
Gespeichert in:
| Veröffentlicht in: | Український математичний вісник |
|---|---|
| Datum: | 2017 |
| 1. Verfasser: | Trofymenko, O.D. |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут прикладної математики і механіки НАН України
2017
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/169325 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Convolution equations and mean value theorems for solutions of linear elliptic equations with constant coefficients in the complex plane / O.D. Trofymenko // Український математичний вісник. — 2017. — Т. 14, № 2. — С. 279-294. — Бібліогр.: 11 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineÄhnliche Einträge
-
Convolution equations and mean value theorems for solutions of linear elliptic equations with constant coefficients in the complex plane
von: O. D. Trofymenko
Veröffentlicht: (2017) -
Mean value theorems for polynomial solutions of linear elliptic equations with constant coefficients in the complex plane
von: O. D. Trofymenko
Veröffentlicht: (2020) -
The existence of solutions of quasi-linear systems of differential equations of elliptic type with measurable coefficients
von: M. I. Yaremenko
Veröffentlicht: (2014) -
Integration of Shazy equation with constant coefficients
von: Chichurin, A.V.
Veröffentlicht: (2003) -
On boundary-value problems for semi-linear equations in the plane
von: V. Gutlyanskii, et al.
Veröffentlicht: (2021)