Keller-Osserman a priori estimates and removability result for the anisotropic porous medium equation with absorption term

We obtain the removability result for quasilinear equations of the special form and prove a priori estimates of the Keller–Osserman type.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Український математичний вісник
Datum:2018
1. Verfasser: Shan, M.A.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2018
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/169389
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Keller-Osserman a priori estimates and removability result for the anisotropic porous medium equation with absorption term / M.A. Shan // Український математичний вісник. — 2018. — Т. 15, № 1. — С. 80-93. — Бібліогр.: 19 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-169389
record_format dspace
spelling Shan, M.A.
2020-06-11T20:22:08Z
2020-06-11T20:22:08Z
2018
Keller-Osserman a priori estimates and removability result for the anisotropic porous medium equation with absorption term / M.A. Shan // Український математичний вісник. — 2018. — Т. 15, № 1. — С. 80-93. — Бібліогр.: 19 назв. — англ.
1810-3200
2010 MSC. 35B40, 35B45
https://nasplib.isofts.kiev.ua/handle/123456789/169389
We obtain the removability result for quasilinear equations of the special form and prove a priori estimates of the Keller–Osserman type.
This paper is supported by Ministry of Education and Science of Ukraine, grant number is 0118U003138.
en
Інститут прикладної математики і механіки НАН України
Український математичний вісник
Keller-Osserman a priori estimates and removability result for the anisotropic porous medium equation with absorption term
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Keller-Osserman a priori estimates and removability result for the anisotropic porous medium equation with absorption term
spellingShingle Keller-Osserman a priori estimates and removability result for the anisotropic porous medium equation with absorption term
Shan, M.A.
title_short Keller-Osserman a priori estimates and removability result for the anisotropic porous medium equation with absorption term
title_full Keller-Osserman a priori estimates and removability result for the anisotropic porous medium equation with absorption term
title_fullStr Keller-Osserman a priori estimates and removability result for the anisotropic porous medium equation with absorption term
title_full_unstemmed Keller-Osserman a priori estimates and removability result for the anisotropic porous medium equation with absorption term
title_sort keller-osserman a priori estimates and removability result for the anisotropic porous medium equation with absorption term
author Shan, M.A.
author_facet Shan, M.A.
publishDate 2018
language English
container_title Український математичний вісник
publisher Інститут прикладної математики і механіки НАН України
format Article
description We obtain the removability result for quasilinear equations of the special form and prove a priori estimates of the Keller–Osserman type.
issn 1810-3200
url https://nasplib.isofts.kiev.ua/handle/123456789/169389
citation_txt Keller-Osserman a priori estimates and removability result for the anisotropic porous medium equation with absorption term / M.A. Shan // Український математичний вісник. — 2018. — Т. 15, № 1. — С. 80-93. — Бібліогр.: 19 назв. — англ.
work_keys_str_mv AT shanma kellerossermanaprioriestimatesandremovabilityresultfortheanisotropicporousmediumequationwithabsorptionterm
first_indexed 2025-11-25T14:44:03Z
last_indexed 2025-11-25T14:44:03Z
_version_ 1850515178968317952
fulltext Український математичний вiсник Том 15 (2018), № 1, 80 – 93 Keller–Osserman a priori estimates and removability result for the anisotropic porous medium equation with absorption term Maria A. Shan (Presented by A. E. Shishkov) Abstract. In this article we obtained the removability result for quasi- linear equations model of which is ut − n∑ i=1 ( umi−1uxi ) xi + f(u) = 0, u ≥ 0. and prove a priori estimates of Keller–Osserman type. 2010 MSC. 35B40, 35B45. Key words and phrases. Anisotropic porous medium equation, Keller– Osserman a priori estimates, removability of isolated singularity. 1. Introduction and main results In this paper we study solutions to quasilinear parabolic equation in the divergent form ut − divA(x, t, u,∇u) + a0(u) = 0, (x, t) ∈ ΩT = Ω× (0, T ), (1.1) satisfying a initial condition u(x, 0) = 0, x ∈ Ω \ {0}, (1.2) where Ω is a bounded domain in Rn, n ≥ 2, 0 < T <∞. We suppose that the functions A = (a1, . . . , an) and a0 satisfy the Caratheodory conditions and the following structure conditions hold A(x, t, u, ξ)ξ ≥ ν1 n∑ i=1 |u|mi−1|ξi|2, Received 02.03.2018 ISSN 1810 – 3200. c⃝ Iнститут прикладної математики i механiки НАН України M. A. Shan 81 |ai(x, t, u, ξ)| ≤ ν2u (mi−1) 1 2  n∑ j=1 |u|mj−1|ξj |2  1 2 , i = 1, n, (1.3) a0(u) ≥ ν1f(u), with positive constants ν1, ν2 and continuous, positive function f(u) and min 1≤i≤n mi > 1− 2 n , max 1≤i≤n mi ≤ m+ 2 n , (1.4) where m = 1 n n∑ i=1 mi. Without loss of generality we will assume later that m1 ≤ m2 ≤ . . . ≤ mn. Many authors studied problems of singularities of solutions of second order quasilinear elliptic and parabolic equations. Review of these results can be found in the monograph of Veron [19]. Brezis and Veron [2] proved that for q ≥ n n−2 the isolated singularities of solutions to the elliptic equation −△u+ uq = 0, are removable. In [3] Brézis and Friedman proved that for q ≥ n+2 n the isolated singularities of solutions for the following parabolic equation ∂u ∂t −△u+ |u|q−1u = 0, (x, t) ∈ ΩT \ {(0, 0)} are removable. The removability of isolated singularity for solutions of the nonanisotropic porous medium equation (m = m1 = . . . = mn, ) ut −△ ( |u|m−1u ) + |u|q−1u = 0, has been proved under the assumption q ≥ m+ 2 n by Kamin and Peletier [5]. Development of the qualitative theory of second order quasilinear el- liptic and parabolic equations with nonstandart growth conditions has been observed in recent decades. Some results of [4, 6, 7, 9, 10, 12, 15–18] we mention here. One of the example of such equations is ∂u ∂t − n∑ i=1 ∂ ∂xi ( |u|(mi−1)(pi−2) ∣∣∣∣ ∂u∂xi ∣∣∣∣pi−2 ∂u ∂xi ) = 0, pi ≥ 2,mi ≥ 1, i = 1, n. The removability result of isolated singularity and a priori estimates of Keller–Osserman type for this equation was obtained in [9, 12]. 82 Keller–Osserman a priori estimates... We now define a weak solution of the problem (1.1), (1.2) with sin- gularity at the point (0, 0). We will write V2,m(ΩT ) for the class of func- tions φ ∈ Cloc(0, T, L 1+m− loc (Ω)) with n∑ i=1 ∫∫ ΩT |φ|mi+m −−2 |φxi | 2 dxdt < ∞, where m− = min(mn, 1). By a weak solution of the problem (1.1), (1.2) we mean a function u(x, t) ≥ 0 satisfying the inclusion uψ ∈ V2,m(ΩT ) ∩ L2 loc(0, T ;W 1,2 loc (Ω)) and the integral identity∫ Ω u(x, τ)ψφdx + τ∫ 0 ∫ Ω {−u(ψφ)t +A(x, t, u,∇u)∇(ψφ) + a0(u)ψφ} dx dt = 0 (1.5) holds for any testing function φ∈W 1,2 loc (0, T ;L 2 loc(Ω))∩L2 loc(0, T ; o W 1,2 loc(Ω)), any ψ ∈ C1(ΩT ) vanishing in the neighborhood of {(0, 0)} and for all τ ∈ (0, T ) . The result of this paper is the removability of isolated singularities for solutions of the anisotropic porous medium equation with absorption term. The proof of this result is based on a priori estimates of Keller– Osserman type of the solution to the equation (1.1). The main difficulty lies in the fact that part of mi < 1 (singular case), and another part of mi > 1 (degenerate case). Theorem 1.1. Let the conditions (1.3), (1.4) be fulfilled and u be a nonnegative weak solution to the problem (1.1), (1.2). Assume also that f(u) = uq and q ≥ m+ 2 n , (1.6) then the singularity at the point {(0, 0)} is removable. Let (x(0), t(0)) ∈ ΩT , for any τ, θ1, θ2, . . . , θn > 0, θ = (θ1, . . . , θn) we define Qθ,τ (x(0), t(0)) := {(x, t) : |t − t(0)| < τ, |xi − x (0) i | < θi, i = 1, n} and set M(θ, τ) := sup Qθ,τ (x(0),t(0)) u, F (θ, τ) := sup Qθ,τ (x(0),t(0)) F (u), F (u)= u∫ 0 sm −−1 f(s)ds, m+= max(mn, 1). Theorem 1.2. Let the conditions (1.3), (1.4) be fulfilled and u be a non- negative weak solution to equation (1.1), assume also that f ∈ C1(R1 +) and f ′ (u) ≥ 0. Let (x(0), t(0)) ∈ ΩT , fix σ ∈ (0, 1), let Q8θ,8τ (x (0), t(0))⊂ M. A. Shan 83 ΩT . Set ρ = { θn, if mn > 1, τ 1 2 , if mn < 1, , then there exist positive number c1, c2 depending only on n, ν1, ν2,m1, . . . ,mn such that either u(x(0), t(0)) ≤ ( θ2n τ ) 1 mn−1 + n−1∑ i=1 ( ρ θi ) 2 m+−mi , (1.7) or (M(σθ, στ))1−m −+ n(m−m−) 2 F (M(σθ, στ)) ≤ c1(1− σ)−γρ−2(M(θ, τ))m ++1+ n(m−m−) 2 (1.8) holds true. We also have, in particular, if F (εu) ≤ εm ++m−+βF (u), β > 0, (1.9) then F (M(θ, τ)) ≤ c2(1− σ)−γMm++m− (θ, τ)ρ−2, (1.10) An example of the function f , which satisfies the conditions (1.9) is f(u) = uq, q ≥ m+ 2 n . Assuming for simplicity that dist(x(0), ∂Ω) = |x(0)|, and choosing τ, θi, from the conditions • mn > 1: ( θ2n τ ) 1 mn−1 = θ − 2 q−mn n , i.e. τ= θ 2(q−1) q−mn n ,( θn θi ) 2 mn−mi = θ − 2 q−mn n , i.e. θi = θ q−mi q−mn n , • mn < 1: ( θ2n τ ) 1 mn−1 = τ − 1 q−mn , i.e. τ= θ 2(q−1) q−mn n ,( τ 1 2 θi ) 2 1−mi = τ − 1 q−1 , i.e. θi = τ q−mi 2(q−1) , from (1.7), (1.10) we obtain an estimate u(x(0), t(0)) ≤ c ( n∑ i=1 |x(0)i | 2 q−mi + (t(0)) 1 q−1 )−1 . (1.11) 2. Keller–Osserman a priori estimates 2.1. Auxiliary propositions LetE(2ρ) = {(x, t) ∈ ΩT : u(x, t) > M(2ρ)}, u(ρ)(x, t) = min ( M (ρ 2 ) − M(2ρ), u(x, t)−M(2ρ)) . 84 Keller–Osserman a priori estimates... Lemma 2.1. [11] Under the assumptions of Theorem 1.1 following in- equality holds ∫∫ E(2ρ) u(ρ)uqψlrdxdt ≤ γ ( M (ρ 2 ) −M(2ρ) ) × { F3(r, λ) + (F1(r, λ) + F2(r, λ)) 1 2F 1 2 4 (r, λ) } , (2.1) where F1(r, λ) =  Rλ(r), λ > 0, ln q−2 q−1 1 r , λ = 0, q > 2, ln ln 1 r , λ = 0, q = 2, ln − 2−q q−1 1 r , λ = 0, q < 2 F2(r, λ) =  Rλ(r), λ > 0, ln q−2m1 q−m1 1 r , λ = 0, q > 2m1, ln ln 1 r , λ = 0, q = 2m1, ln − 2m1−q 1−m1 1 r , λ = 0, q < 2m1. F3(r, λ) =  Rλ(r), λ > 0, ln − 1 q−1 1 r , λ = 0, F4(r, λ) =  Rλ(r), λ > 0, ln−1 1 R(r) , λ = 0, where λ = n− 2 q−m , 0 < r < R0. Lemma 2.2. [1] Let Ω ⊂ Rn, n ≥ 2 be a bounded domain, v ∈ o W 1,1(Ω) and n∑ i=1 ∫ Ω |v|αi |vxi |pidx <∞, αi ≥ 0, pi > 1. (2.2) If 1 < p < n, then v ∈ Lq(Ω), q = np n−p ( 1 + 1 n n∑ i=1 αi pi ) , 1 p = 1 n n∑ i=1 1 pi and the following inequality holds ∥v∥Lq(Ω) ≤ γ n∏ i=1 ∫ Ω |v|αi |vxi |pidx  1 npi ( 1+ 1 n n∑ i=1 αi pi ) , (2.3) where the positive constant γ depends only on n, pi, αi, i = 1, n. M. A. Shan 85 Lemma 2.3. [8, chap. 2] Let {yj}j∈N be a sequence of nonnegative num- bers such that for any j = 0, 1, 2, . . . the inequality yj+1 ≤ Cbjy1+εj holds with positive ε, C > 0, b > 1. Then the following estimate is true yj ≤ C (1+ε)j−1 ε b (1+ε)j−1 ε2 − j ε y (1+ε)j 0 . Particulary, if y0 ≤ C− 1 ε b− 1 ε2 , then lim j→∞ yj = 0. 2.2. Integral estimates of solutions Consider a cylinder Qθ,τ (x(0), t(0)) and let (x̄, t̄) be an arbitrary point in Qσθ,στ (x (0), t(0)). If u(x(0), t(0)) ≥ ( θ2n τ ) 1 mn−1 + n−1∑ i=1 ( ρ θi ) 2 m+−mi then M(θ, τ)=max(M(θ,τ),δ(θ,τ))≥(τ−1θn) 1 mn−1 + n∑ i=1 (θ−1 i ρ) 2 m+−mi , and hence Qη,s(x̄, t̄)⊂Qθ,τ (x(0), t(0)), where s = (1 − σ)M1−m+ (θ, τ)ρ2, ηi = (1 − σ)M mi−m+ 2 (θ, τ)ρ, i = 1, n. For fixed k > 0 and l, j = 0, 1, 2 . . . set αl = 1 4(1+ 2−1+ · · ·+2−l), set kj = k(1− 2−j), ηi,j,l = (αl+ 1 42 −j−l−1)ηi, i = 1, n, ηj,l = (η1,j,l, . . . , ηn,j,l), sj,l = (αl + 1 42 −j−l−1)s, Qj,l = Qηj,l,sj,l(x̄, t̄), Akj ,j,l = {x ∈ Qj,l(x̄, t̄) : F (u) > kj}. Let ξj ∈ C∞ 0 (Qj,l(x̄, t̄)), 0 ≤ ξj ≤ 1, ξj = 1 in Qj+1,l(x̄, t̄), ∣∣∣∂ξj∂t ∣∣∣ ≤ γ2j+ls−1, ∣∣∣ ∂ξj∂xi ∣∣∣ ≤ γ2j+lη−1 i , i = 1, n. In what follows γ stands for a constant depending only n, ν1, ν2, m1, . . . , mn which may vary from line to line. Lemma 2.4. Let u be a nonnegative weak solution to equation (1.1) and let conditions (1.3), (1.4) hold. Then for any j ≥ 0 the following inequality holds true l1−m − j ∫ Akj,j,l (t) (F (u)− kj) 2 +ξ 2 j dx+ n∑ i=1 lmi−m− j ∫∫ Akj,j,l |∇((F (u)− kj)+)|2 ξ2j dxdt + ∫∫ Akj,j,l (F (u)− kj)+f 2(u)ξ2j dxdt≤γMm+−m− (θ, τ)ρ−2 ∫∫ Akj,j,l (F (u)− kj) 2 +dxdt (2.4) where lj = F−1(kj), j = 0, 1, 2, . . . 86 Keller–Osserman a priori estimates... Proof. Testing identity (1.5) by φ = (F (u)−kj)+f(u)ξ2j , using conditions (1.3) we obtain ∫∫ Akj,j,l utf(u)(F (u)− kj)+ξ 2 j dxdt + n∑ i=1 ∫∫ Akj,j,l umi+m −−2|uxi |2f2(u)ξ2j dxdt+ ∫∫ Akj,j,l (F (u)− kj)+f 2(u)ξ2j dxdt ≤ γ n∑ i=1 ∫∫ Akj,j,l u mi−1 2 ( n∑ l=1 uml−1|uxl | 2 ) 1 2 (F (u)− kj)+f(u)ξj ∣∣∣∣∂ξj∂xi ∣∣∣∣ dxdt. From this, using the Young inequality and the evident inequality lj < u(x, t) < M(θ, τ) on Akj ,j,l we arrive at the required (2.4). 2.3. Proof of Theorem 1.2 By Lemma 2.2 and the Hölder inequality we obtain Yj+1,l = ∫∫ Akj+1,j+1,l (F (u)− kj+1) 2 +dxdt ≤ ∣∣Akj+1,j+1,l ∣∣ 2 n+2  ∫∫ Akj+1,j+1,l ((F (u)− kj+1)+ξj) 2(n+2) n dxdt  n n+2 ≤ ∣∣Akj+1,j+1,l ∣∣ 2 n+2 ess sup 0<t<T  ∫ Akj+1,j+1,l(t) (F (u)− kj+1) 2 +ξ 2 j dx  2 n+2 ×  T∫ 0 n∏ i=1  ∫ Akj+1,j+1,l(t) |((F (u)− kj+1)+ξj)xi | 2 dx  1 n dt  n n+2 ≤ ∣∣Akj+1,j+1,l ∣∣ 2 n+2 ess sup 0<t<T  ∫ Akj+1,j+1,l(t) (F (u)− kj+1) 2 +ξ 2 j dx  2 n+2 M. A. Shan 87 ×  T∫ 0 n∏ i=1  ∫ Akj+1,j+1,l(t) |((F (u)− kj+1)+)xi | 2 ξ2j dx + ∫ Akj+1,j+1,l(t) (F (u)− kj+1) 2 + ∣∣∣∣∂ξj∂xi ∣∣∣∣2 dx  1 n dt  n n+2 . Denote Ql = Qαlη,αls,Ml = sup Ql u, using (2.4), it follows from Lem- ma 2.3 that yj,l → 0 as j → ∞, provided k is chosen to satisfy k2 = γ2lγ l m−−1+ n(m−−m) 2 j M (n+2)(m+−m−) 2 l+1 (θ, τ)ρ−n−2 ∫∫ Ql+1 F 2(u)dxdt. From this we obtain M 1−m−+ n(m−m−) 2 l F 2(Ml) ≤ γ(1− σ)−γ2lγM (n+2)(m+−m−) 2 l+1 ρ−n−2 ∫∫ Ql+1 F 2(u)dxdt. Denoting M 1−m− 2 + n(m−m−) 4 l F (Ml) =M a 2 l F (Ml) = Ψl, we have Ψ2 l ≤ γ(1− σ)−γ2lγΨl+1M (n+2)(m+−m−) 2 −a 2 l+1 ρ−n−2 ∫∫ Ql+1 F (u)dxdt ≤ εΨ2 l+1 + 1 ε (1− σ)−γγ2lγ(M(θ, τ))(n+2)(m+−m−)−a ×ρ−2(n+2) ∫∫ Ql+1 F (u)dxdt  2 . From this by iteration Ψ2(u(x̄, t̄)) ≤ Ψ2 0 ≤ εlΨ2 l + 1 ε γ(1− σ)−γ l−1∑ i=0 (ε2γ)i ×(M(θ, τ))(n+2)(m+−m−)−aρ−2(n+2) ∫∫ Ql+1 F (u)dxdt  2 . 88 Keller–Osserman a priori estimates... We choose ε = 2−γ−1 and passing to the limit as l → ∞, we obtain (u(x̄, t̄))1−m −+ n(m−m−) 2 F (u(x̄, t̄))) ≤ γ(1− σ)−γρ−n−2(M(θ, τ)) (n+2)(m+−m−) 2 ∫∫ Q η 2 , s2 (x̄,t̄) f(u)um − dxdt. (2.5) To estimate the integral on the right-hand side of (2.5) we test integral identity by φ = um − ζ2, using conditions (1.4) and the Hölder inequality, we obtain∫∫ Q η 2 , s2 (x̄,t̄) f(u)um − ζ2dxdt≤γ ∫∫ Q η 2 , s2 (x̄,t̄) um −+1|ζt|ζdxdt+ γ n∑ i=1 ∫∫ Q η 2 , s2 (x̄,t̄) umi+m −|ζxi |2dxdt ≤ γρ−2Mm++m− (θ, τ)|Q η 2 , s 2 (x̄, t̄)| ≤ γρnMm−+1+m−m+ 2 n(θ, τ). (2.6) Since (x̄, t̄) is an arbitrary point in Qσθ,στ (x(0), t(0)) from (2.5), (2.6) we arrive at (M(σθ, στ))1−m −+ n(m−m−) 2 F (M(σθ, στ)) ≤ γ(1− σ)−γρ−2(M(θ, τ))m ++1+ n(m−m−) 2 . (2.7) For j = 0, 1, 2 . . . define the sequences {σj}, {θj}, {τj}, {Mj} by σj := 1−2−j−1 1−2−j−2 , θj := (θ1j , θ2j , . . . , θnj), θij = θi ( 1 + 1 2 + · · ·+ 1 2j ) , i = 1, n, τj = τ ( 1 + 1 2 + · · ·+ 1 2j ) , Mj := sup Qθj ,τj (x(o)) , Γ(Mj) = [ F (Mj) Mm++m− j ] 1 m++1+ n(m−m−) 2 . We write (2.7) for the pair of boxes Qθj ,τj (x (0), t(0)) and Qθj+1,τj+1 (x(0), t(0)). This gives MjΓ(Mj) ≤ γ(1− σ)−γ2jγρ −2 m++1+ n(m−m−) 2 Mj+1. Using the following inequality which is an immediate consequence of our choice of Γ Γ(u)v ≤ ε−1Γ(u)u+ Γ(εv)v, ε, u, v > 0, (2.8) indeed if v ≤ ε−1u, then Γ(u)v ≤ ε−1Γ(u)u, and if v ≥ ε−1u, then Γ(u)v ≤ Γ(εv)v, and in both cases (2.8) holds. M. A. Shan 89 If ε ∈ (0, 1), µ = β m++1+ n(m−m−) 2 then Γ(Ml) ≤ Γ(εMl+1) + 1 ε Γ(Ml)Ml Ml+1 ≤ Γ(εMl+1) + ε−1γ(1− σ)−γ2lγρ −2 m++1+ n(m−m−) 2 ≤ εµΓ(Ml+1) + ε−1γ(1− σ)−γ2lγρ −2 m++1+ n(m−m−) 2 . From this by iteration Γ(M0) ≤ εlµΓ(Mi+1) + ε−1γ(1− σ)−γ l∑ i=0 (εiµ2iγ)ρ −2 m++1+ n(m−m−) 2 . We choose εµ = 2−γ−1 and passing to the limit as l → ∞, we obtain Γ(u(x(0), t(0))) ≤ γ(1− σ)−γρ −2 m++1+ n(m−m−) 2 . Return to the previous notation F (u(x(0), t(0))) ≤ γ(1− σ)−γ(M(θ, τ))m ++m− ρ−2. (2.9) Thus Theorem 1.2 is proved. 3. Proof of Theorem 1.1 3.1. Pointwise estimates of solutions Let Qr = (x, t) ∈ ΩT : ( t κ(λ) κ1(λ) + n∑ i=1 |xi| κi(λ) κ1(λ) )κ1(λ) < r,  , where κ(λ) = 1 2+(n−λ)(m−1) , κi(λ) = 2 2+(n−λ)(m−mi) , i = 1, n, λ = n − 2 q−m . For 0 < r < ρ < R0 2 (R0 : QR0 ⊂ ΩT ) we set M(r) = sup QR0 \Qr u(x, t) and u2ρ = u(x, t) − M(2ρ) ≤ M (ρ 2 ) − M(2ρ) for (x, t) ∈ QR0 \ Q ρ 2 . For fixed k > 0 and j = 0, 1, . . . set ρj = ρ 4 ( 1 + 1 2j ) , kj = k(1 − 2−j), Akj ,j = {(x, t) ∈ Qρj : u2ρ > kj}. Let ζj ∈ C∞ ( Q ρj+1+ρj 2 ) , 0 ≤ ζj ≤ 1, ζj = 1 outside Qρj , ζj = 0 in Qρj+1 , and ∣∣∣∂ζj∂t ∣∣∣ ≤ γ2jγρ − 1 κ(λ) , ∣∣∣ ∂ζj∂xi ∣∣∣ ≤ 90 Keller–Osserman a priori estimates... γ2jγρ − 2 κi(λ) , i = 1, n. Let i0 be the number such that mi ≤ 1, i = 1, . . . i0 and mi > 1, i = i0+1, . . . n, m′ = 1 n i0∑ i=1 mi, m ′′ = 1 n n∑ i=i0+1 mi. Note that i0 = 0 if mi > 1, i = 1, n, and i0 = n if mi ≤ 1, i = 1, n. Testing identity (1.4) by φ = (u2ρ−kj)+ζ2j , using conditions (1.4) we obtain ess sup ∫ Akj,j (t) (u2ρ − kj) 2 +ζjdx+ i0∑ i=1 Mmi−1 (ρ 2 )∫∫ Akj,j |uxi |2ζ2j dxdt + n∑ i=i0+1 kmi−1 j ∫∫ Akj,j |uxi |2ζ2j dxdt+ ∫∫ Akj,j (u2ρ − kj)+u qζ2j dxdt ≤ γ ( M2 (ρ 2 ) ρ − 1 κ(λ) + n∑ i=1 Mmi+1 (ρ 2 ) ρ − 2 κi(λ) ) |Akj ,j |. (3.1) By Lemma 2.2, the Hölder inequality and estimate (3.1), we obtain Yj+1 = ∫∫ Akj+1,j+1 (u2ρ − kj+1) 2 +dxdt ≤ ∣∣Akj+1,j+1 ∣∣ 2 n+2  ∫∫ Akj+1,j+1 ((u2ρ − kj+1)+ζj) 2+ 4 ndxdt  n n+2 ≤ ∣∣Akj+1,j+1 ∣∣ 2 n+2 ess sup 0<t<T  ∫ Akj+1,j+1(t) (u2ρ − kj+1) 2 +ζ 2 j dx  2 n+2 ×  t∫ 0 n∏ i=1  ∫ Akj+1,j+1(t) |((u2ρ − kj+1)+ζj)xi | 2 dx  1 n dτ  n n+2 ≤ γM (1−m ′ )i0 n+2 (ρ 2 ) k (1−m ′′ )(n−i0) n+2 j+1 × ( M2 (ρ 2 ) ρ − 1 κ(λ) + n∑ i=1 Mmi+1 (ρ 2 ) ρ − 2 κi(λ) ) |Akj+1,j+1|1+ 2 n+2 . From this by the evident inequality (u2ρ− kj)+ ≥ k 2j+1 on Akj+1,j , we obtain estimate M. A. Shan 91 Yj+1 ≤ γ2jγM (1−m ′ )i0 n+2 (ρ 2 ) k (1−m ′′ )(n−i0) n+2 j+1 ( M2 (ρ 2 ) ρ − 1 κ(λ) + n∑ i=1 Mmi+1 (ρ 2 ) ρ − 2 κi(λ) ) Y 1+ 2 n+2 j . (3.2) It follows from Lemma 2.3 that (M(ρ)−M(2ρ)) (m ′′ −1)(n−i0) 2 +n+4 ≤ γ2jγM (1−m ′ )i0 n+2 (ρ 2 ) × ( M2 (ρ 2 ) ρ − 1 κ(λ) + n∑ i=1 Mmi+1 (ρ 2 ) ρ − 2 κi(λ) )∫∫ Q ρ 2 u22ρdxdt. (3.3) By the Hölder inequality and Lemma 2.1 we get (M(ρ)−M(2ρ)) (m ′′ −1)(n−i0) 2 +n+4 ≤ γ2jγM (1−m ′ )i0 n+2 (ρ 2 ) × ( M2 (ρ 2 ) ρ − 1 κ(λ) + n∑ i=1 Mmi+1 (ρ 2 ) ρ − 2 κi(λ) ) × { F3(r, λ) + (F1(r, λ) + F2(r, λ)) 1 2F 1 2 4 (r, λ) } |Q ρ 2 | q−1 q+1 . (3.4) Similarly to [11], we obtain the following estimate M(ρ)−M(2ρ) ≤ 0, iterating last inequality we get for any ρ ≤ R0 2 M(ρ) ≤M(R0), this proves the boundedness of solutions. 3.2. End of the proof of Theorem 1.1 Let K be a compact subset in Ω, and ξ = 0 in ∂Ω× (0, T ), such that ξ = 1 for (x, t) ∈ K × (0, T ). Testing (1.5) by φ = um − ξ2ψr, ψ = ψr, using conditions (1.3), the Young inequality, the boundedness of u and passing to the limit r → 0 we get sup 0<t<T ∫ K um −+1dx+ n∑ i=1 T∫ 0 ∫ K umi+m −−2|uxi |2dxdt+ T∫ 0 ∫ K uq+m − dxdt ≤ γ. (3.5) 92 Keller–Osserman a priori estimates... Testing (1.5) by φψr, using (1.3), the boundedness of solution, and passing to the limit r → 0, we obtain the integral identity (1.5) with an arbitrary φ ∈ W 1,2 loc (0, T ;L 2 loc(Ω)) ∩ L2 loc(0, T ; o W 1,2 loc(Ω)) and ψ ≡ 1. Thus Theorem 1.1 is proved. Acknowledgements This paper is supported by Ministry of Education and Science of Ukraine, grant number is 0118U003138. References [1] O. V. Besov, V. P. Ilin, S. M. Nikolskii, Integral representations of functions and embedding theorems, New York Toronto, 1978. [2] H. Brezis, L. Veron, Removable singularities for some nonlinear elliptic equations // Arch. Rational Mech. Anal., 75(1) (1980), 1–6. [3] H. Brezis, A. Friedman, Nonlinear parabolic equations involving measure as initial conditions // J. Math. Pures Appl., 62 (1983), 73–97. [4] N. Fusco, C. Sbordone, Some remarks on the regularity of minima of anisotropic integrals // Comm. PDE, 18 (1993), 153–167. [5] S. Kamin, L. A. Peletier, Source type solutions of degenerate diffusion equations with absorption // Israel JI. Math., 50 (1985), 219–230. [6] I. M. Kolodij, On boundedness of generalized solutions of parabolic differential equations // Vestnik Moskov. Gos. Univ., 5 (1971), 25–31. [7] G. Lieberman, Gradient estimates for anisotropic elliptic equations // Adv. Diff. Equat., 10 (2005), No. 7, 767–812. [8] O. A. Ladyzhenskaya, N. N. Ural’tseva, Linear and quasilinear elliptic equations, Academic Press, New York, 1968. [9] Yu. V. Namlyeyeva, A. E. Shishkov, I. I. Skrypnik, Removable isolated singular- ities for solutions of doubly nonlinear anisotropic parabolic equations // Appl. Analysis, 89(10) (2010), No. 4, 1559–1574. [10] Yu. V. Namlyeyeva, A. E. Shishkov, I. I. Skrypnik, Isolated singularities of so- lutions of quasilinear anisotropic elliptic equations // Adv. Nonlin. Studies, 6 (2006), No. 4, 617–641. [11] M. A. Shan, Removability of an isolated singularity for solutions of anisotropic porous medium equation with absorption term // J. Math. Sciences, 222 (2017), No. 6, 741–749. [12] M. A. Shan, I. I. Skrypnik, Keller-Osserman a priori estimates and the Harnack inequality for quasilinear elliptic and parabolic equations with absorption term // Nonlinear Analysis, 155 (2017), 97–114. [13] I. I. Skrypnik, Local behaviour of solutions of quasilinear elliptic equations with absorption // Trudy Inst. Mat. Mekh. Nats. Akad. Nauk Ukrainy, 9 (2004), 183– 190 [in Russian]. [14] I. I. Skrypnik, Removability of isolated singularities of solutions of quasilinear parabolic equations with absorption // Mat. Sb., 196 (2005), No. 11, 141–160; transl. in Sb. Math., 196 (2005), No. 11, 1693–1713. M. A. Shan 93 [15] I. I. Skrypnik, Removability of an isolated singularity for anisotropic elliptic equa- tions with absorption // Mat. Sb., 199 (2008), No. 7, 8–102. [16] I. I. Skrypnik, Removability of isolated singularity for anisotropic parabolic equa- tions with absorption // Manuscr. Math., 140 (2013), 145–178. [17] I. I. Skrypnik, Removability of isolated singularities for anisotropic elliptic equa- tions with gradient absorption // Isr. J. Math., 215 (2016), 163–179. [18] I. I. Skrypnik, Removable singularities for anisotropic elliptic equations // Isr. J. Math., 41 (2014), No. 4, 1127–1145. [19] L. Veron, Singularities of solution of second order quasilinear equations, Pitman Research Notes in Mathematics Series, Longman, Harlow, 1996. Contact information Maria Alekseevna Shan Vasyl’ Stus Donetsk National University, Vinnytsia, Ukraine E-Mail: shan_maria@ukr.net