On geodesic bifurcations of product spaces

The bifurcation is described as a situation where there exist at least two different geodesics going through the given point in the given direction. In the previous works, the examples of local and closed bifurcations are constructed. This paper is devoted to the further study of these bifurcations....

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Український математичний вісник
Дата:2018
Автори: Ryparova, L., Mikes, J., Sabykanov, A.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2018
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/169402
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On geodesic bifurcations of product spaces / L. Ryparova, J. Mikes, A. Sabykanov // Український математичний вісник. — 2018. — Т. 15, № 2. — С. 264-271. — Бібліогр.: 6 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-169402
record_format dspace
spelling Ryparova, L.
Mikes, J.
Sabykanov, A.
2020-06-12T15:41:31Z
2020-06-12T15:41:31Z
2018
On geodesic bifurcations of product spaces / L. Ryparova, J. Mikes, A. Sabykanov // Український математичний вісник. — 2018. — Т. 15, № 2. — С. 264-271. — Бібліогр.: 6 назв. — англ.
1810-3200
2010 MSC. 53A05, 53B21, 53B30, 53B35, 53C22
https://nasplib.isofts.kiev.ua/handle/123456789/169402
The bifurcation is described as a situation where there exist at least two different geodesics going through the given point in the given direction. In the previous works, the examples of local and closed bifurcations are constructed. This paper is devoted to the further study of these bifurcations. We construct an example of n-dimensional (pseudo-) Riemannian and Kahlerian spaces which are product ones that admit a local bifurcation of geodesics and also a closed geodesic.
Research supported by IGA PrF 2018012 at Palacky University Olomouc, and by specific university research at Brno University of Technology FAST-S-18-5184.
en
Інститут прикладної математики і механіки НАН України
Український математичний вісник
On geodesic bifurcations of product spaces
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title On geodesic bifurcations of product spaces
spellingShingle On geodesic bifurcations of product spaces
Ryparova, L.
Mikes, J.
Sabykanov, A.
title_short On geodesic bifurcations of product spaces
title_full On geodesic bifurcations of product spaces
title_fullStr On geodesic bifurcations of product spaces
title_full_unstemmed On geodesic bifurcations of product spaces
title_sort on geodesic bifurcations of product spaces
author Ryparova, L.
Mikes, J.
Sabykanov, A.
author_facet Ryparova, L.
Mikes, J.
Sabykanov, A.
publishDate 2018
language English
container_title Український математичний вісник
publisher Інститут прикладної математики і механіки НАН України
format Article
description The bifurcation is described as a situation where there exist at least two different geodesics going through the given point in the given direction. In the previous works, the examples of local and closed bifurcations are constructed. This paper is devoted to the further study of these bifurcations. We construct an example of n-dimensional (pseudo-) Riemannian and Kahlerian spaces which are product ones that admit a local bifurcation of geodesics and also a closed geodesic.
issn 1810-3200
url https://nasplib.isofts.kiev.ua/handle/123456789/169402
citation_txt On geodesic bifurcations of product spaces / L. Ryparova, J. Mikes, A. Sabykanov // Український математичний вісник. — 2018. — Т. 15, № 2. — С. 264-271. — Бібліогр.: 6 назв. — англ.
work_keys_str_mv AT ryparoval ongeodesicbifurcationsofproductspaces
AT mikesj ongeodesicbifurcationsofproductspaces
AT sabykanova ongeodesicbifurcationsofproductspaces
first_indexed 2025-12-07T19:54:39Z
last_indexed 2025-12-07T19:54:39Z
_version_ 1850880588319293440