Shifted Darboux transformations of the generalized Jacobi matrices, I

Let J be a monic generalized Jacobi matrix, i.e., a three-diagonal block matrix of a special form. We find conditions for a monic generalized Jacobi matrix J to admit a factorization J = LU + αI with L and U being lower and upper triangular two-diagonal block matrices of special forms. In this case,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Український математичний вісник
Datum:2018
1. Verfasser: Kovalyov, I.M.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2018
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/169420
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Shifted Darboux transformations of the generalized Jacobi matrices, I / I.M. Kovalyov // Український математичний вісник. — 2018. — Т. 15, № 4. — С. 490-515. — Бібліогр.: 26 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-169420
record_format dspace
spelling Kovalyov, I.M.
2020-06-12T19:20:29Z
2020-06-12T19:20:29Z
2018
Shifted Darboux transformations of the generalized Jacobi matrices, I / I.M. Kovalyov // Український математичний вісник. — 2018. — Т. 15, № 4. — С. 490-515. — Бібліогр.: 26 назв. — англ.
1810-3200
2010 MSC. Primary 47B36; Secondary 47B50; 42C05; 15A23
https://nasplib.isofts.kiev.ua/handle/123456789/169420
Let J be a monic generalized Jacobi matrix, i.e., a three-diagonal block matrix of a special form. We find conditions for a monic generalized Jacobi matrix J to admit a factorization J = LU + αI with L and U being lower and upper triangular two-diagonal block matrices of special forms. In this case, the shifted parameterless Darboux transformation of J defined by J(p) = UL+αI is shown to be also a monic generalized Jacobi matrix. Analogs of the Christoffel formulas for polynomials of the first and second kinds corresponding to the Darboux transformation J(p) are found.
en
Інститут прикладної математики і механіки НАН України
Український математичний вісник
Shifted Darboux transformations of the generalized Jacobi matrices, I
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Shifted Darboux transformations of the generalized Jacobi matrices, I
spellingShingle Shifted Darboux transformations of the generalized Jacobi matrices, I
Kovalyov, I.M.
title_short Shifted Darboux transformations of the generalized Jacobi matrices, I
title_full Shifted Darboux transformations of the generalized Jacobi matrices, I
title_fullStr Shifted Darboux transformations of the generalized Jacobi matrices, I
title_full_unstemmed Shifted Darboux transformations of the generalized Jacobi matrices, I
title_sort shifted darboux transformations of the generalized jacobi matrices, i
author Kovalyov, I.M.
author_facet Kovalyov, I.M.
publishDate 2018
language English
container_title Український математичний вісник
publisher Інститут прикладної математики і механіки НАН України
format Article
description Let J be a monic generalized Jacobi matrix, i.e., a three-diagonal block matrix of a special form. We find conditions for a monic generalized Jacobi matrix J to admit a factorization J = LU + αI with L and U being lower and upper triangular two-diagonal block matrices of special forms. In this case, the shifted parameterless Darboux transformation of J defined by J(p) = UL+αI is shown to be also a monic generalized Jacobi matrix. Analogs of the Christoffel formulas for polynomials of the first and second kinds corresponding to the Darboux transformation J(p) are found.
issn 1810-3200
url https://nasplib.isofts.kiev.ua/handle/123456789/169420
citation_txt Shifted Darboux transformations of the generalized Jacobi matrices, I / I.M. Kovalyov // Український математичний вісник. — 2018. — Т. 15, № 4. — С. 490-515. — Бібліогр.: 26 назв. — англ.
work_keys_str_mv AT kovalyovim shifteddarbouxtransformationsofthegeneralizedjacobimatricesi
first_indexed 2025-12-07T17:10:51Z
last_indexed 2025-12-07T17:10:51Z
_version_ 1850870282262151168