To the theory of semi-linear equations in the plane

In two dimensions, we present a new approach to the study of the semilinear equations of the form div[A(z)∇u] = f(u), the diffusion term of which is the divergence uniform elliptic operator with measurable matrix functions A(z),whereas its reaction term f(u) is a continuous non-linear function. Assu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Український математичний вісник
Datum:2019
Hauptverfasser: Gutlyanskii, V.Ya., Nesmelova, O.V., Ryazanov, V.I.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2019
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/169434
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:To the theory of semi-linear equations in the plane / V.Ya. Gutlyanskii, O.V. Nesmelova, V.I. Ryazanov // Український математичний вісник. — 2019. — Т. 16, № 1. — С. 105-140. — Бібліогр.: 74 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-169434
record_format dspace
spelling Gutlyanskii, V.Ya.
Nesmelova, O.V.
Ryazanov, V.I.
2020-06-13T08:36:40Z
2020-06-13T08:36:40Z
2019
To the theory of semi-linear equations in the plane / V.Ya. Gutlyanskii, O.V. Nesmelova, V.I. Ryazanov // Український математичний вісник. — 2019. — Т. 16, № 1. — С. 105-140. — Бібліогр.: 74 назв. — англ.
1810-3200
2010 MSC. Primary 30C62, 31A05, 31A20, 31A25, 31B25, 35J61 Secondary 30E25, 31C05, 34M50, 35Q15
https://nasplib.isofts.kiev.ua/handle/123456789/169434
In two dimensions, we present a new approach to the study of the semilinear equations of the form div[A(z)∇u] = f(u), the diffusion term of which is the divergence uniform elliptic operator with measurable matrix functions A(z),whereas its reaction term f(u) is a continuous non-linear function. Assuming that f(t)/t → 0 as t → ∞, we establish a theorem on existence of weak C(Ď )∩ W¹,² loc (D) solutions of the Dirichlet problem with arbitrary continuous boundary data in any bounded domains D without degenerate boundary components. As consequences, we give applications to some concrete model semi-linear equations of mathematical physics, arising from modelling processes in anisotropic and inhomogeneous media. With a view to further development of the theory of boundary value problems for the semi-linear equations, we prove a theorem on the solvability of the Dirichlet problem for the Poisson equation in Jordan domains with arbitrary boundary data that are measurable with respect to the logarithmic capacity.
This work was partially supported by grant of Ministry of Education and Science of Ukraine, project number is 0119U100421.
en
Інститут прикладної математики і механіки НАН України
Український математичний вісник
To the theory of semi-linear equations in the plane
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title To the theory of semi-linear equations in the plane
spellingShingle To the theory of semi-linear equations in the plane
Gutlyanskii, V.Ya.
Nesmelova, O.V.
Ryazanov, V.I.
title_short To the theory of semi-linear equations in the plane
title_full To the theory of semi-linear equations in the plane
title_fullStr To the theory of semi-linear equations in the plane
title_full_unstemmed To the theory of semi-linear equations in the plane
title_sort to the theory of semi-linear equations in the plane
author Gutlyanskii, V.Ya.
Nesmelova, O.V.
Ryazanov, V.I.
author_facet Gutlyanskii, V.Ya.
Nesmelova, O.V.
Ryazanov, V.I.
publishDate 2019
language English
container_title Український математичний вісник
publisher Інститут прикладної математики і механіки НАН України
format Article
description In two dimensions, we present a new approach to the study of the semilinear equations of the form div[A(z)∇u] = f(u), the diffusion term of which is the divergence uniform elliptic operator with measurable matrix functions A(z),whereas its reaction term f(u) is a continuous non-linear function. Assuming that f(t)/t → 0 as t → ∞, we establish a theorem on existence of weak C(Ď )∩ W¹,² loc (D) solutions of the Dirichlet problem with arbitrary continuous boundary data in any bounded domains D without degenerate boundary components. As consequences, we give applications to some concrete model semi-linear equations of mathematical physics, arising from modelling processes in anisotropic and inhomogeneous media. With a view to further development of the theory of boundary value problems for the semi-linear equations, we prove a theorem on the solvability of the Dirichlet problem for the Poisson equation in Jordan domains with arbitrary boundary data that are measurable with respect to the logarithmic capacity.
issn 1810-3200
url https://nasplib.isofts.kiev.ua/handle/123456789/169434
citation_txt To the theory of semi-linear equations in the plane / V.Ya. Gutlyanskii, O.V. Nesmelova, V.I. Ryazanov // Український математичний вісник. — 2019. — Т. 16, № 1. — С. 105-140. — Бібліогр.: 74 назв. — англ.
work_keys_str_mv AT gutlyanskiivya tothetheoryofsemilinearequationsintheplane
AT nesmelovaov tothetheoryofsemilinearequationsintheplane
AT ryazanovvi tothetheoryofsemilinearequationsintheplane
first_indexed 2025-12-07T19:32:52Z
last_indexed 2025-12-07T19:32:52Z
_version_ 1850879217544200192