Some criteria of boundedness of the L-index in direction for slice holomorphic functions of several complex variables

We investigate the slice holomorphic functions of several complex variables that have a bounded L-index in some direction and are entire on every slice {z⁰ + tb : t ∈ C} for every z⁰ ∈ Cⁿ and for a given direction b ∈ Cⁿ \ {0}. For this class of functions, we prove some criteria of boundedness of th...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Український математичний вісник
Дата:2019
Автори: Bandura, A., Skaskiv, O.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2019
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/169438
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Some criteria of boundedness of the L-index in direction for slice holomorphic functions of several complex variables / A. Bandura, O. Skaskiv // Український математичний вісник. — 2019. — Т. 16, № 2. — С. 154-180. — Бібліогр.: 31 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-169438
record_format dspace
spelling Bandura, A.
Skaskiv, O.
2020-06-13T10:14:42Z
2020-06-13T10:14:42Z
2019
Some criteria of boundedness of the L-index in direction for slice holomorphic functions of several complex variables / A. Bandura, O. Skaskiv // Український математичний вісник. — 2019. — Т. 16, № 2. — С. 154-180. — Бібліогр.: 31 назв. — англ.
1810-3200
2010 MSC. 32A10, 32A17, 32A37, 30H99, 30A05
https://nasplib.isofts.kiev.ua/handle/123456789/169438
We investigate the slice holomorphic functions of several complex variables that have a bounded L-index in some direction and are entire on every slice {z⁰ + tb : t ∈ C} for every z⁰ ∈ Cⁿ and for a given direction b ∈ Cⁿ \ {0}. For this class of functions, we prove some criteria of boundedness of the L-index in direction describing a local behavior of the maximum and minimum moduli of a slice holomorphic function and give estimates of the logarithmic derivative and the distribution of zeros. Moreover, we obtain analogs of the known Hayman theorem and logarithmic criteria. They are applicable to the analytic theory of differential equations. We also study the value distribution and prove the existence theorem for those functions. It is shown that the bounded multiplicity of zeros for a slice holomorphic function F : Cⁿ → C is the necessary and sufficient condition for the existence of a positive continuous function L : Cⁿ → R₊ such that F has a bounded L-index in direction.
The authors are thankful to Professor S. Yu. Favorov (Kharkiv) for the formulation of interesting problem.
en
Інститут прикладної математики і механіки НАН України
Український математичний вісник
Some criteria of boundedness of the L-index in direction for slice holomorphic functions of several complex variables
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Some criteria of boundedness of the L-index in direction for slice holomorphic functions of several complex variables
spellingShingle Some criteria of boundedness of the L-index in direction for slice holomorphic functions of several complex variables
Bandura, A.
Skaskiv, O.
title_short Some criteria of boundedness of the L-index in direction for slice holomorphic functions of several complex variables
title_full Some criteria of boundedness of the L-index in direction for slice holomorphic functions of several complex variables
title_fullStr Some criteria of boundedness of the L-index in direction for slice holomorphic functions of several complex variables
title_full_unstemmed Some criteria of boundedness of the L-index in direction for slice holomorphic functions of several complex variables
title_sort some criteria of boundedness of the l-index in direction for slice holomorphic functions of several complex variables
author Bandura, A.
Skaskiv, O.
author_facet Bandura, A.
Skaskiv, O.
publishDate 2019
language English
container_title Український математичний вісник
publisher Інститут прикладної математики і механіки НАН України
format Article
description We investigate the slice holomorphic functions of several complex variables that have a bounded L-index in some direction and are entire on every slice {z⁰ + tb : t ∈ C} for every z⁰ ∈ Cⁿ and for a given direction b ∈ Cⁿ \ {0}. For this class of functions, we prove some criteria of boundedness of the L-index in direction describing a local behavior of the maximum and minimum moduli of a slice holomorphic function and give estimates of the logarithmic derivative and the distribution of zeros. Moreover, we obtain analogs of the known Hayman theorem and logarithmic criteria. They are applicable to the analytic theory of differential equations. We also study the value distribution and prove the existence theorem for those functions. It is shown that the bounded multiplicity of zeros for a slice holomorphic function F : Cⁿ → C is the necessary and sufficient condition for the existence of a positive continuous function L : Cⁿ → R₊ such that F has a bounded L-index in direction. The authors are thankful to Professor S. Yu. Favorov (Kharkiv) for the formulation of interesting problem.
issn 1810-3200
url https://nasplib.isofts.kiev.ua/handle/123456789/169438
citation_txt Some criteria of boundedness of the L-index in direction for slice holomorphic functions of several complex variables / A. Bandura, O. Skaskiv // Український математичний вісник. — 2019. — Т. 16, № 2. — С. 154-180. — Бібліогр.: 31 назв. — англ.
work_keys_str_mv AT banduraa somecriteriaofboundednessofthelindexindirectionforsliceholomorphicfunctionsofseveralcomplexvariables
AT skaskivo somecriteriaofboundednessofthelindexindirectionforsliceholomorphicfunctionsofseveralcomplexvariables
first_indexed 2025-12-07T17:30:37Z
last_indexed 2025-12-07T17:30:37Z
_version_ 1850871525861752832