Двухэтапный проксимальный алгоритм для задачи о равновесии в пространстве Адамара

Предложен двухэтапный проксимальный алгоритм для приближенного решения задач о равновесии в пространствах Адамара. Данный алгоритм является аналогом ранее изученного двухэтапного алгоритма для задач о равновесии в гильбертовом пространстве. Для псевдомонотонных бифункций липшицевого типа доказана т...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Доповіді НАН України
Datum:2020
Hauptverfasser: Ведель, Я.И., Семёнов, В.В., Чабак, Л.М.
Format: Artikel
Sprache:Russian
Veröffentlicht: Видавничий дім "Академперіодика" НАН України 2020
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/170330
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Двухэтапный проксимальный алгоритм для задачи о равновесии в пространстве Адамара / Я.И. Ведель, В.В. Семёнов, Л.М. Чабак // Доповіді Національної академії наук України. — 2020. — № 2. — С. 7-14. — Бібліогр.: 13 назв. — рос.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:Предложен двухэтапный проксимальный алгоритм для приближенного решения задач о равновесии в пространствах Адамара. Данный алгоритм является аналогом ранее изученного двухэтапного алгоритма для задач о равновесии в гильбертовом пространстве. Для псевдомонотонных бифункций липшицевого типа доказана теорема о слабой сходимости порожденных алгоритмом последовательностей. Запропоновано двоетапний проксимальний алгоритм для наближеного розв'язання задач про рівновагу в просторах Адамара. Даний алгоритм є аналогом раніше дослідженого двоетапного алгоритму для задач про рівновагу в гільбертовому просторі. Для псевдомонотонних біфункцій ліпшицевого типу доведено теорему про слабку збіжність послідовностей, що породжені алгоритмом. We consider the equilibrium problem in Hadamard spaces, which extends and unifies several problems in optimization, variational inequalities, fixedpoint theory, and many other parts in nonlinear analysis. First, we give the necessary facts about Hadamard metric spaces and consider the statements of equilibrium problems associated with pseudomonotone bifunctions with suitable conditions on the bifunctions in Hadamard spaces. Then, to approximate an equilibrium point, we consider the twostage proximal algorithm for pseudomonotone bifunctions. This algorithm is an analog of the previously studied twostage algorithm for equilibrium problems in a Hilbert space. For Lipschitztype pseudomonotone bifunctions, a theorem on the weak convergence of sequences generated by the algorithm is proved.
ISSN:1025-6415