On solvability of inhomogeneous boundary-value problems in Sobolev—Slobodetskiy spaces

We investigate the most general class of Fredholm one-dimensional boundary-value problems in the Sobolev—Slobodetskiy spaces. Boundary conditions of these problems may contain a derivative of the whole or fractional order. It is established that each of these boundary-value problems corresponds to...

Full description

Saved in:
Bibliographic Details
Published in:Доповіді НАН України
Date:2020
Main Authors: Mikhailets, V.A., Skorobohach, T.V.
Format: Article
Language:English
Published: Видавничий дім "Академперіодика" НАН України 2020
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/170404
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:On solvability of inhomogeneous boundary-value problems in Sobolev—Slobodetskiy spaces / V.A. Mikhailets, T.V. Skorobohach // Доповіді Національної академії наук України. — 2020. — № 4. — С. 10-14. — Бібліогр.: 7 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:We investigate the most general class of Fredholm one-dimensional boundary-value problems in the Sobolev—Slobodetskiy spaces. Boundary conditions of these problems may contain a derivative of the whole or fractional order. It is established that each of these boundary-value problems corresponds to a certain rectangular numerical characteristic matrix with kernel and cokernel having the same dimension as the kernel and cokernel of the boundary- value problem. The sufficient conditions for the sequence of the characteristic matrices of a specified boundary-value problems to converge are found. Досліджено найбільш широкий клас нетерових одновимірних крайових задач у просторах Соболєва—Слободецького. Крайові умови в них можуть містити похідні розв'язку цілого або дробового порядку. Встановлено, що кожній із таких крайових задач відповідає деяка прямокутна числова характеристична матриця, вимірність ядра і коядра якої збігаються відповідно з вимірністю ядра і коядра крайової задачі. Знайдені достатні умови збіжності послідовності характеристичних матриць розглянутих крайових задач. Исследуется наиболее широкий класс нетеровых одномерных краевых задач в пространствах Соболева—Слободецкого. Краевые условия в них могут содержать производные решения целого или дробного порядка. Показано, что каждой из таких краевых задач соответствует некоторая прямоугольная числовая характеристическая матрица, размерность ядра и коядра которой совпадают соответственно с размерностью ядра и коядра краевой задачи. Найдены достаточные условия сходимости последовательности характеристических матриц рассмотренных краевых задач.
ISSN:1025-6415