Statistical sampling and feature selection for epilepsy pattern recognition

Epilepsy is one of the most common neurological diseases that has broad spectrum of debilitating medical and social consequences. The automatic forecasting and detecting systems are vitally important, since they allow patients to avoid dangerous activities in advance of the seizure. We present som...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Доповіді НАН України
Дата:2020
Автори: Gaidar, V.O., Sudakov, O.O.
Формат: Стаття
Мова:English
Опубліковано: Видавничий дім "Академперіодика" НАН України 2020
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/170409
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Statistical sampling and feature selection for epilepsy pattern recognition / V.O. Gaidar, O.O. Sudakov // Доповіді Національної академії наук України. — 2020. — № 4. — С. 53-56. — Бібліогр.: 4 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Epilepsy is one of the most common neurological diseases that has broad spectrum of debilitating medical and social consequences. The automatic forecasting and detecting systems are vitally important, since they allow patients to avoid dangerous activities in advance of the seizure. We present some methods of feature extraction and selection for detecting the epileptiform activity in electroencephalography signals, based on the processing of a non-stationary signal. The proposed approach is based on the application of the Discrete Wavelet Transform (DWT) and signal processing techniques in order to create the feature vector. Afterwards, the principal component analysis and support vector machine techniques are used in order to reduce the dimensionality of the feature vector. Епілепсія — одне з найпоширеніших неврологічних захворювань, яке має широкий спектр когнітивних та соціальних проявів. У представленій статті застосовано методи виділення та відбору статистичних ознак інтракраніального електроенцефалографічного сигналу для виявлення епілептичної активності та її ранньої діагностики. Запропонований підхід базується на застосуванні дискретного вейвлет-перетворення та методах обробки сигналів для створення вектора ознак. Метод головних компонент та метод опорних векторів використано для зменшення розмірності вектора ознак та бінарної класифікації. За результатами роботи вектор з тринадцяти компонент було зменшено до вектора з п'яти компонент зі збереженням специфічності та чутливості класифікації. Эпилепсия — одно из самых распространенных неврологических заболеваний, которое имеет широкий спектр когнитивных и социальных проявлений. В представленной статье применены методы выделения и отбора статистических признаков интракраниального электроэнцефалографического сигнала для обнаружения эпилептической активности и ее ранней диагностики. Предложенный подход основан на применении дискретного вейвлет-преобразования и методах обработки сигналов для создания вектора признаков. Метод главных компонент и метод опорных векторов применены для уменьшения размерности вектора признаков и бинарной классификации. По результатам работы вектор из тринадцати компонент был уменьшен до вектора из пяти компонент с сохранением специфичности и чувствительности классификации.
ISSN:1025-6415