Условие существования единственной функции Грина-Самойленко задачи об инвариантном торе
У припущенні, що лінійна однорідна система, яка визиачена на прямому добутку тора та евклідового простору, є експоиенціально-дихотомічною на півосях, отримано умову ісиування единої фуикції Гріна - Самойленка задачі про інваріантний тор та знайдено її вираз через проектори, що визначають дихотомію н...
Saved in:
| Published in: | Український математичний журнал |
|---|---|
| Date: | 2001 |
| Main Author: | |
| Format: | Article |
| Language: | Russian |
| Published: |
Інститут математики НАН України
2001
|
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/172194 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Условие существования единственной функции Грина-Самойленко задачи об инвариантном торе / А.А. Бойчук // Український математичний журнал. — 2001. — Т. 53, № 4. — С. 556-559. — Бібліогр.: 3 назв. — рос. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Summary: | У припущенні, що лінійна однорідна система, яка визиачена на прямому добутку тора та евклідового простору, є експоиенціально-дихотомічною на півосях, отримано умову ісиування единої фуикції Гріна - Самойленка задачі про інваріантний тор та знайдено її вираз через проектори, що визначають дихотомію на півосях.
Under the assumption that a linear homogeneous system defined on the direct product of a torus and a Euclidean space is exponentially dichotomous on the semiaxes, we obtain a condition for the existence of a unique Green–Samoilenko function for the problem of invariant torus. We find an expression for this function in terms of projectors that determine the dichotomy on the semiaxes.
|
|---|---|
| ISSN: | 1027-3190 |