Асимптотика по параметру решений уравнения Штурма-Лиувилля
Розглянуто диференціальне рівняння на скінченному відрізку [0,l] із параметром μ ∈ C, яке має вигляд (a(x)y′(x))′ + [μρ₁(x) + ρ₂(x)]y(x) = 0. За умов a(x), ρ(x) ∈ L∞[0,l], ρj(x) ∈ L₁[0,l], j = 1, 2, і майже скрізь a(x) ≥ m₀ > 0; ρ(x) ≥ m₁ > 0— абсолютно неперервна функція на [0,l], одержано...
Saved in:
| Published in: | Український математичний журнал |
|---|---|
| Date: | 2001 |
| Main Authors: | , |
| Format: | Article |
| Language: | Ukrainian |
| Published: |
Інститут математики НАН України
2001
|
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/172252 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Асимптотика по параметру решений уравнения Штурма-Лиувилля / А.М. Гомилко, В.Н. Пивоварчик // Український математичний журнал. — 2001. — Т. 53, № 6. — С. 742-757. — Бібліогр.: 17 назв. — укр. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Summary: | Розглянуто диференціальне рівняння на скінченному відрізку [0,l] із параметром μ ∈ C, яке має вигляд
(a(x)y′(x))′ + [μρ₁(x) + ρ₂(x)]y(x) = 0.
За умов a(x), ρ(x) ∈ L∞[0,l], ρj(x) ∈ L₁[0,l], j = 1, 2, і майже скрізь a(x) ≥ m₀ > 0; ρ(x) ≥ m₁ > 0— абсолютно неперервна функція на [0,l], одержано асимптотичні формули експоненціального типу для фундаментальної системи розв'язків цього рівняння при |μ| → ∞.
On a finite segment [0, l], we consider the differential equation
(a(x)y′(x))′ + [μρ₁ (x) + ρ₂ (x)]y(x) = 0
with a parameter μ ∈ C. In the case where a(x), ρ(x) ∈ L∞[0, l], ρ j (x) ∈ L₁ [0, l], j = 1, 2, a(x) ≥ m₀ > 0 and ρ(x) ≥ m₁ > 0 almost everywhere, and a(x)ρ(x) is a function absolutely continuous on the segment [0, l], we obtain exponential-type asymptotic formulas as |μ| → ∞ for a fundamental system of solutions of this equation.
|
|---|---|
| ISSN: | 1027-3190 |