Экстремальные задачи теории емкостей конденсаторов в локально компактных пространствах. III

Завершено побудову теорії внутрішніх ємностей конденсаторів у локально компактному просторі, розпочату у перших двох частинах роботи. Конденсатор трактується як впорядкована скінченна сукупність множин, кожній з' яких приписано знак + або - , причому замикання різнознакових множин попарно диз&#...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Український математичний журнал
Datum:2001
1. Verfasser: Зорий, Н.В.
Format: Artikel
Sprache:Russian
Veröffentlicht: Інститут математики НАН України 2001
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/172253
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Экстремальные задачи теории емкостей конденсаторов в локально компактных пространствах. III / Н.В. Зорий // Український математичний журнал. — 2001. — Т. 53, № 6. — С. 758-782. — Бібліогр.: 17 назв. — рос.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-172253
record_format dspace
spelling Зорий, Н.В.
2020-10-28T12:05:47Z
2020-10-28T12:05:47Z
2001
Экстремальные задачи теории емкостей конденсаторов в локально компактных пространствах. III / Н.В. Зорий // Український математичний журнал. — 2001. — Т. 53, № 6. — С. 758-782. — Бібліогр.: 17 назв. — рос.
1027-3190
https://nasplib.isofts.kiev.ua/handle/123456789/172253
517.982.26
Завершено побудову теорії внутрішніх ємностей конденсаторів у локально компактному просторі, розпочату у перших двох частинах роботи. Конденсатор трактується як впорядкована скінченна сукупність множин, кожній з' яких приписано знак + або - , причому замикання різнознакових множин попарно диз'юнктні. Побудована теорія є змістовною для довільних (не обов'язково компактних чи замкнених) конденсаторів. Отримано достатні та (або) необхідні умови розв'язності основної мінімум-проблеми теорії ємностей конденсаторів, що при досить загальних припущеннях утворюють критерій. Знайдено постановки та розв'язано екстремальні задачі, які є дуальними до основної мінімум-проблеми, але на відміну,від останньої, завжди розв'язні (навіть у випадку незамкненого конденсатора). У всіх згаданих екстремальних задачах отримано опис потенціалів мінімальних мір та досліджено властивості екстремалей. Як допоміжний результат розв'язано відому задачу про Існування міри конденсатора. Побудована теорія.містить у собі як частинні випадки основні результати теорії ємкостей конденсаторів у Rⁿ , n ≥ 2, відносно класичних ядер.
We complete the construction of the theory of interior capacities of condensers in locally compact spaces begun in the previous two parts of the work. A condenser is understood as an ordered finite collection of sets each of which is marked with the sign + or − so that the closures of sets with opposite signs are mutually disjoint. The theory developed here is rich in content for arbitrary (not necessarily compact or closed) condensers. We obtain sufficient and (or) necessary conditions for the solvability of the main minimum problem of the theory of capacities of condensers and show that, under fairly general assumptions, these conditions form a criterion. For the main minimum problem (generally speaking, unsolvable even for a closed condenser), we pose and solve dual problems that are always solvable (even in the case of a nonclosed condenser). For all extremal problems indicated, we describe the potentials of minimal measures and investigate properties of extremals. As an auxiliary result, we solve the well-known problem of the existence of a condenser measure. The theory developed here includes (as special cases) the main results of the theory of capacities of condensers in Rⁿ , n ≥ 2, with respect to the classical kernels.
ru
Інститут математики НАН України
Український математичний журнал
Статті
Экстремальные задачи теории емкостей конденсаторов в локально компактных пространствах. III
Extremal Problems in the Theory of Capacities of Condensers in Locally Compact Spaces. III
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Экстремальные задачи теории емкостей конденсаторов в локально компактных пространствах. III
spellingShingle Экстремальные задачи теории емкостей конденсаторов в локально компактных пространствах. III
Зорий, Н.В.
Статті
title_short Экстремальные задачи теории емкостей конденсаторов в локально компактных пространствах. III
title_full Экстремальные задачи теории емкостей конденсаторов в локально компактных пространствах. III
title_fullStr Экстремальные задачи теории емкостей конденсаторов в локально компактных пространствах. III
title_full_unstemmed Экстремальные задачи теории емкостей конденсаторов в локально компактных пространствах. III
title_sort экстремальные задачи теории емкостей конденсаторов в локально компактных пространствах. iii
author Зорий, Н.В.
author_facet Зорий, Н.В.
topic Статті
topic_facet Статті
publishDate 2001
language Russian
container_title Український математичний журнал
publisher Інститут математики НАН України
format Article
title_alt Extremal Problems in the Theory of Capacities of Condensers in Locally Compact Spaces. III
description Завершено побудову теорії внутрішніх ємностей конденсаторів у локально компактному просторі, розпочату у перших двох частинах роботи. Конденсатор трактується як впорядкована скінченна сукупність множин, кожній з' яких приписано знак + або - , причому замикання різнознакових множин попарно диз'юнктні. Побудована теорія є змістовною для довільних (не обов'язково компактних чи замкнених) конденсаторів. Отримано достатні та (або) необхідні умови розв'язності основної мінімум-проблеми теорії ємностей конденсаторів, що при досить загальних припущеннях утворюють критерій. Знайдено постановки та розв'язано екстремальні задачі, які є дуальними до основної мінімум-проблеми, але на відміну,від останньої, завжди розв'язні (навіть у випадку незамкненого конденсатора). У всіх згаданих екстремальних задачах отримано опис потенціалів мінімальних мір та досліджено властивості екстремалей. Як допоміжний результат розв'язано відому задачу про Існування міри конденсатора. Побудована теорія.містить у собі як частинні випадки основні результати теорії ємкостей конденсаторів у Rⁿ , n ≥ 2, відносно класичних ядер. We complete the construction of the theory of interior capacities of condensers in locally compact spaces begun in the previous two parts of the work. A condenser is understood as an ordered finite collection of sets each of which is marked with the sign + or − so that the closures of sets with opposite signs are mutually disjoint. The theory developed here is rich in content for arbitrary (not necessarily compact or closed) condensers. We obtain sufficient and (or) necessary conditions for the solvability of the main minimum problem of the theory of capacities of condensers and show that, under fairly general assumptions, these conditions form a criterion. For the main minimum problem (generally speaking, unsolvable even for a closed condenser), we pose and solve dual problems that are always solvable (even in the case of a nonclosed condenser). For all extremal problems indicated, we describe the potentials of minimal measures and investigate properties of extremals. As an auxiliary result, we solve the well-known problem of the existence of a condenser measure. The theory developed here includes (as special cases) the main results of the theory of capacities of condensers in Rⁿ , n ≥ 2, with respect to the classical kernels.
issn 1027-3190
url https://nasplib.isofts.kiev.ua/handle/123456789/172253
citation_txt Экстремальные задачи теории емкостей конденсаторов в локально компактных пространствах. III / Н.В. Зорий // Український математичний журнал. — 2001. — Т. 53, № 6. — С. 758-782. — Бібліогр.: 17 назв. — рос.
work_keys_str_mv AT zoriinv ékstremalʹnyezadačiteoriiemkosteikondensatorovvlokalʹnokompaktnyhprostranstvahiii
AT zoriinv extremalproblemsinthetheoryofcapacitiesofcondensersinlocallycompactspacesiii
first_indexed 2025-12-07T16:02:58Z
last_indexed 2025-12-07T16:02:58Z
_version_ 1850866011256913920