Про еволюційний оператор градієнтної дифузійної ієрархії для плоских ротаторів

За допомогою високотемпературного кластерного розкладу побудовано еволюційний оператор градієнтної дифузійної ієрархії типу ББГКІ для плоских ротаторів, що взаємодіють завдяки су-мовному парному потенціалу, у бапаховому просторі, до якого належать гіббсівські (стаціонарні) кореляційні функції. Збіжн...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Український математичний журнал
Datum:2001
1. Verfasser: Скрипник, В.І.
Format: Artikel
Sprache:Ukrainian
Veröffentlicht: Інститут математики НАН України 2001
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/172424
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Про еволюційний оператор градієнтної дифузійної ієрархії для плоских ротаторів / В.І. Скрипник // Український математичний журнал. — 2001. — Т. 53, № 12. — С. 1664-1685. — Бібліогр.: 10 назв. — укр.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:За допомогою високотемпературного кластерного розкладу побудовано еволюційний оператор градієнтної дифузійної ієрархії типу ББГКІ для плоских ротаторів, що взаємодіють завдяки су-мовному парному потенціалу, у бапаховому просторі, до якого належать гіббсівські (стаціонарні) кореляційні функції. Збіжність розкладу доведено для достатньо малого часового проміжку, В результаті доведено, що в цьому ж бапаховому просторі існують слабкі розв'язки ієрархії. Якщо початкові кореляційні функції є локально гіббсівськими кореляційними функціями, то ці розв'язки визначені па довільному часовому проміжку. By using a high-temperature cluster expansion, we construct the evolution operator of the BBGKY-type gradient diffusion hierarchy for plane rotators that interact via a summable pair potential in a Banach space containing the Gibbs (stationary) correlation functions. We prove the convergence of this expansion for a sufficiently small time interval. As a result, we prove that weak solutions of the hierarchy exist in the same Banach space. If the initial correlation functions are locally perturbed Gibbs correlation functions, then these solutions are defined on an arbitrary time interval.
ISSN:1027-3190